選択移動
このオプションを使用して、選択アイテムを正確に移動、配置することができます。
移動タイプ
絶対
このモードでは、X位置とY位置の値を使用して、オブジェクトのアンカーポイントを直接配置します。
相対
このオプションの選択時には、X位置とY位置項目に入力された値により、入力された距離で現行位置から増分的にオブジェクトをオフセットします。アンカーオプションはこのモードには関係がないため無効になります。
インタラクティブモードで移動フォームを開くためのショートカットキーはMです。
どちらのビューでも使用可能
このツールは 2D ビューと 3D ビューの両方で使用できます。
2D ビューでは、ベクターをより直接的に表示できますが、3D ビューでは、3D デザインでベクターを操作したり、編集ボックスを活用したりするための柔軟性が高まります。
ジョブセットアップ:片面
[ジョブ セットアップ] フォームは、新しいジョブが作成されるとき、または既存のジョブのサイズと位置が編集されるときに表示されます。
サイズフォームに制限がある場合があります
ほとんどの場合、新しいジョブは、ジョブが機械加工される材料のサイズ、または少なくとも切断される部品を含む大きな材料片の領域を表します。 [OK] をクリックすると、新しい空のジョブが作成され、2D ビューに灰色の四角形として描画されます。 2D 設計ウィンドウに灰色の水平および垂直の点線が描画され、X0 点と Y0 点の位置が示されます。
職種
片面 ジョブ タイプは、設計で材料を片側から切断することのみが必要な場合に使用します。これは、設計と加工が最も簡単なジョブ タイプです。
両面 ジョブ タイプは、材料の 両側 をカットする必要がある場合に便利です。Aspire を使用すると、単一のプロジェクト ファイル内でデザインの両面の作成とカットのプロセスを視覚化して管理できます。
ロータリー ジョブ タイプでは、 回転軸 (第 4 軸またはインデクサーとも呼ばれます) の使用が可能になります。Aspire は、回転設計に適した代替の視覚化、シミュレーション、およびツールを提供します。
ジョブサイズ
フォームのこのセクションでは、プロジェクトで使用するマテリアル ブロックの寸法を、幅 (X 軸)、高さ (Y 軸)、厚さ (Z 軸) の観点から定義します。
また、デザインに使用する測定単位としてインチ (ヤードポンド法/英国法) またはミリメートル (メートル法) を選択することもできます。
XY基準位置
この基準点は、ジョブの任意のコーナーまたは中央に設定できます。これは、X0、Y0 に配置されたときに工作機械と一致する、設計に対する相対的な位置を表します。このフォームが開いている間、基準点の位置を強調するために、2D ビューに赤い四角形が描画されます。
オフセットを使用する
このオプションを使用すると、基準位置を X0、Y0 以外の値に設定できます。
デザインのスケーリング
既存のジョブのジョブ サイズ パラメータを編集する場合、このオプションは、既に作成した図面を新しいジョブの寸法に合わせて 比例して 拡大縮小するかどうかを決定します。ジョブ サイズが変更された後でも図面の既存のサイズを維持する場合は、このオプションをオフにしておきます。このオプションをオンにすると、 をクリックしたときに、新しいマテリアルの範囲内で同じ比率と相対位置を維持するように図面のサイズが変更されます。
モデリング解像度
3D モデルの解像度/品質を設定します。3D モデルを操作する場合、特定の操作には大量の計算とメモリが必要になることがあります。解像度を設定すると、作業している部分の品質と速度の最適なバランスを選択できます。選択した解像度品質が高いほど、コンピューターのパフォーマンスは遅くなります。
これは、作業している特定のパーツとコンピューターのハードウェア パフォーマンスに完全に依存するため、このドキュメントのような形式で設定を推奨することは困難です。一般的に、Aspire ユーザーが作成するパーツの大部分は、標準 (最速) 設定で問題ありません。作成するパーツが比較的大きい (18 インチ以上) が、細部が細かい場合は、高解像度 (3 倍遅い) などの高い解像度を選択することをお勧めします。また、非常に大きいパーツ (48 インチ以上) で細部が細かい場合は、最高 (7 倍遅い) 設定が適切です。
パーツの詳細を考慮する必要がある理由は、1 つの大きなアイテム (例: 魚) を含むパーツを作成する場合は標準解像度で問題ありませんが、多数の詳細なアイテム (例: 魚の群れ) を含むパーツの場合は、高または最高設定の方が適しているからです。前述のように、これらは非常に一般的なガイドラインであり、低速または古いコンピューターでは最高設定での操作は計算に長い時間がかかる場合があります。
解像度は作業領域全体に適用されるため、彫刻する予定のパーツがちょうど収まる大きさにパーツのサイズを設定することが重要です。 切断する予定のパーツが 12 x 12 しかない場合に、素材をマシンのサイズ (例: 96 x 48) に設定することはお勧めできません。そうすると、12 x 12 領域の解像度が非常に低くなります。
外観
をクリックすると、ベース 3D モデルに適用される色またはマテリアル効果を設定できるダイアログがポップアップ表示されます。これはいつでも変更でき、コンポーネント マネージャーを使用してさまざまなコンポーネントに異なる色とマテリアルを適用することもできます。さまざまなマテリアル設定とカスタム マテリアル効果の追加の詳細については、 工具経路をプレビュー を参照してください。
工具データベース
工具データベースは、カッターの管理と選択を速やかにかつ容易に行うために使用されます。また、不適切な加工深さや送りと速度を使用したプログラミングジョブのエラーを誤設定を削減します。指定したマシン/素材に対して、リストから既定工具と(速度、送り、ステップオーバーなどの)設定を選択することができます。
工具データベースは、多様な工具経路フォームのボタンからアクセスします。工具経路タブボタンまたは工具経路メニューから開くことができます。
概要
データベース内の主なエンティティと関係をまとめます。詳細は次のセクションで説明します。
- 工具形状エンティティ(ツリーで階層的に管理)
- 素材のリスト(素材管理ダイアログで管理)
- マシンのリスト(マシン管理ダイアログで管理)
- 各工具形状の加工データセット(これは加工パラメータや送りと速度を含み、マシン/素材ごとに定義されます。)
工具プロパティは2つのカテゴリに分割されています。
- 工具形状:これは直径、先端半径などの工具の実際のプロパティです。
- 加工データ:工具の加工パラメータや送りと速度を含みます。これらの値は、特定の素材/マシンに対して定義されます。
変更を適用
工具データベースを修正したらOKをクリックして変更を保存します。キャンセルボタンをクリックして工具データベースを閉じると、データベースを開いてから行われた変更は無視されます。
工具ツリー
工具ツリーは工具データベースの左側に配置されています。リスト内のアイテムをクリックして確認、またはデータベースウィンドウの工具情報セクションを使用してプロパティを編集します。
リスト内でアイテムをドラッグアンドドロップし、順序を変更またはグループ内/外を移動することができます。
新規工具
当該タイプのデフォルト名で新規工具を作成します。デフォルトで、工具は最初に利用可能になるタイプで作成されますが、工具タイプドロップダウンを使用して必要なタイプに変更することができます。
工具をコピー
リストで選択した工具形状またはグループを複製します。工具をコピーする場合は、加工パラメーターはコピーされません。
後ほど加工パラメーターに対し、以下が可能になります。
- 異なる素材の同一工具からコピー
- 同一形状の任意の素材の工具
- デフォルト値で作成
工具を削除
工具とそれが定義する全マシン/素材のすべての加工データを削除します。同様に、グループを削除するとその内部の全工具が削除されます。
新規工具グループ
工具データベースに新規グループを作成します。新規に作成したグループに工具をドラッグすることができます。または、グループを選択し、選択したグループの下層に直接新規工具を作成することもできます。
工具をエクスポート
個別の工具またはグループ全体を工具データベースファイルにエクスポートします。
工具をインポート
工具データベースファイルは、開いている工具データベースにインポートすることができます。3つのオプションがあります。
- インポート:選択グループの下層(またはトップレベルの工具/グループとして)に指定工具をインポートします。
- マージ:(選択にかかわらず)現行の工具グループ階層に対象工具グループのマージを試行します。
- 上書き:同一の工具形状の類似しネスト化された工具が2つある場合、対象工具の加工データがアクティブマシン/素材の現行工具の加工データを上書きします。
- 上書きなし:対象工具の加工データを含む新規マシン/素材が作成されます。
工具定義
工具リストで工具またはグループが選択されると、そのプロパティが工具データベースの右側にある工具情報セクションに表示されます。
名前
当該工具タイプの名前のテンプレートを編集するための名前のフォーマットダイアログを開きます。
ここに表示される名前は、現行コンテキストのテンプレートの評価結果になります(アクティブマシン、素材、工具形状と定義された加工データ)。
工具グループの名前は、このダイアログが直接定義可能です。
工具タイプ
データベースで多様なカッターを指定することができます。カッタータイプの変更は新規工具の作成と同様です。そのため、当該工具のすべての既存データが適用できなくなる可能性があります。
メモ
ツール ノート セクションでは、追加のテキスト説明、特別な指示、または必要な関連情報をツール定義内に保存できます。
ノートにリンクを入力するには、Web ブラウザで適切なページに移動し、アドレス バーからページの URL を選択します。
CRTL+C を押してコピーし、メモ フィールドで右クリックし、[貼り付け] オプションを使用してメモに入力します。
ノート ウィンドウで HTML リンクを使用するには、CRTL キーを押したままリンクをクリックします。これにより、コンピュータのデフォルトの Web ブラウザが開き、Web ページがロードされます。
直径
工具の直径です(単位:インチ/mm)。この寸法が取得された位置を表す工具イメージが表示されます。
溝の数
溝の数です。チップ負荷の値を計算する場合に有用です。
加工データ
加工データは素材とマシンごとに異なるパラメータのセットです。このパラメータセットはマシンと素材ごとに定義されます。アクティブ素材/マシンのパラメータセットが表示されます。
作成/コピー
加工データは素材とマシンごと定義されます。工具に対してデータが未定義の場合、複数の方法で定義することができます。
- 一部デフォルト値を使用して作成(その後、目的に基づいて値を変更)
- 異なる素材の同一工具からコピー(類似した素材や同様の硬さの素材の使用時に最適です。)
- 異なる素材の異なる工具からコピー
パス深さ
工具が切削できる最大の切込み深さ。パス深さは、ツールパスに対して計算される Z レベル パスの数を制御します。
たとえば、パス深さ 0.25 インチ (6.35 mm) の工具を使用して深さ 1 インチ (25.4 mm) のポケットを作成すると、ツールパスは 4 つのパスを作成することになります。
この値は、機械の剛性と材料の硬度に応じて、機械/材料ごとに定義できます。
ステップオーバー
領域クリアランス加工時にカッターが移動する距離です。たとえばラスター加工では、カッターがX軸沿いに加工し、Y方向でステップオーバーし、最初の加工ラインに平行に戻ります。ステップオーバーが大きいほどジョブの加工速度が速くなります。しかし工具が破損しないように、加工される素材と使用される工具のバランスを考慮しなければなりません。そのため、このプロパティ(ならびにその他のすべての加工パラメータ)は、素材/マシンごとに定義可能です。
カッター/先端直径の50%以上のステップオーバーが使用されると、ソフトウェアは工具経路のコーナー領域に自動的に「テール」移動を追加します。これによりオフセットベースの方法で、素材を確実にジョブから除去します。
V-ビット工具の使用時には、ステップオーバー項目が以下のオプションを使用するように自動的に変更されます。
最終パスステップオーバー
仕上げ加工時にカッターが移動する距離で、ジョブで滑らかなサーフェス仕上げを生成するために、一般的には比較的小さな距離が設定されます。
クリアランスパスステップオーバー
V-ビット工具を使用し、複数のZレベルで指定された平坦深さまで荒加工を行う場合のみ使用されます。工具が素材の荒加工のみを行うため、このステップオーバーは最終パスステップオーバーよりはるかに大きくなります。クリアランスパスステップオーバーを増加させると、加工時間が削減されます。しかし、加工される素材に対して大きくなりすぎないように注意が必要です。
回転速度
工具回転の速度で分当たりの回転で指定されます。
送り速度
カッターが素材を移動するサーフェス加工速度です。単位は秒または分当たりの距離で指定可能です。
切込み速度
カッターが素材に対して垂直に移動、またはランプ移動する加工速度です。単位は秒または分当たりの距離で指定可能です。
素材/マシン
使用する送り速度と切込み速度は、加工される素材と使用される工具により異なります。
チップ負荷
刃数、回転速度、送り速度の入力値に基づいて算出されたチップ負荷です。製造元の推奨チップ負荷値と比較できるように表示されます。
最大燃焼率
これは、工具が100%の電力で素材を燃焼する最大速度です。この値はシミュレーションのみに使用されます。レーザーと素材に一致するように較正する必要があります。値が大きいほどシミュレーションされる工具経路が濃くなります。
レーザー工具経路の作成とシミュレーションには、レーザーモジュールへのアクセスが必要です。
工具番号
ジョブの加工に必要な工具の番号です。自動工具交換(ATC)を搭載したCNCマシンを使用する場合、ジョブの加工に必要な工具が、対応するカルーセルの場所に正しく配置されなければなりません。
マシン単位
このパラメータはマシン単位で定義される必要があります。そのため、(マシンと素材単位で定義されるその他の加工データパラメータとは異なり)異なる素材間で共有することができます。
素材/マシン管理
工具プロパティの加工パラメータ/送りと速度セクションは、アクティブマシン/素材に対して定義されます。そのため、各素材またはマシンに対して異なる値を持つ工具を設定し、現行ジョブに使用する素材に基づいて容易に交換することができます。
素材
コンボボックスを使用してアクティブ素材を変更します。素材の追加、削除、編集を行う素材管理ダイアログから変更することもできます。
マシン
コンボボックスを使用してアクティブマシンを変更します。マシンの追加、削除、編集を行うマシン管理ダイアログから変更することもできます。
オンライン工具データベース
工具データベースはポータルアカウントに保存およびリンク可能です。そのため、異なるインストールからいつでも取得することができます。これには、ソフトウェアがポータルアカウントにログインしている必要があります。ログインすると、必要に応じてデータベースのアップロード/ダウンロードが可能になります。
ログイン
保存されている工具データベースにアクセスしたり、既存のローカル工具データベースをアップロードするためにポータルにログインします。
ダウンロード
ポータルアカウントに保存されている工具データベースをダウンロードし、既存のローカル工具データベースを変更します。これは、最新のバージョンがオンラインから入手可能な場合に使用します。
アップロード
工具データベースに変更を加えたら、ポータルアカウントにアップロードします。これにより、同じポータルアカウントにリンクされている別のロケーションからダウンロードすることができます。
リモートツールデータベース
一番右のアイコンを使用すると、提供された URL リンクからリモート ツール データベースをロードできます。詳細については リモートツールデータベース ページをご覧ください。
成形カッターの使用方法
成形カッターは工具データベースに追加可能です。これにより、業界標準であるオジーカッターやラウンドオーバータイプのカッターに加え、ユーザー定義可能なカスタム形状をエッジの倣い加工や装飾カービングに使用することができます。
該当するカッタータイプと利用可能な加工の例は以下を参照してください。
カスタム成形カッター
工具データベースを開く前に、2Dウィンドウに正確なスケールの右側カッター形状を作成します。ノード編集ツールを使用して、円弧やカーブを作成します。
形状
正しいサイズとスケールで、上図のようにカッター形状の右側のみ作成します。形状は線、円弧、ベジェスパンを組み合わせて作成することができます。
ベクトルを選択し、工具データベースを開いて新規工具を作成します。工具タイプを成形工具にします。
選択した形状がインポートされ、ウィンドウに輪郭が表示されます。カッターに識別しやすい名前を付けます。定義した多様な素材に対し、送りと速度などの加工パラメータを入力します。
適用/OKボタンをクリックし、新規カッターをデータベースリストに保存します。これによりいつでも利用することができます。
レーザーモジュール
注記
レーザー モジュールは、ソフトウェアの有料アドオンとして利用できます。これらの機能はデフォルトでは含まれていません。
Laser Module は Aspire の有料アドオンで、次の追加機能を追加します。
- レーザーカットおよびフィルツールパスを作成する機能
- レーザー ピクチャ ツールパスを作成する機能
- レーザー ツールパスをシミュレートする機能
レーザー モジュールのライセンス コードをお持ちの場合は、[ヘルプ] > [ライセンス コードの入力] メニュー項目を使用してインストールできます。ライセンス コードを [ライセンス コード] フィールドに入力します。 「ライセンス先」フィールドを変更する必要はありません。
機能を有効にするには、ソフトウェアを再起動する必要があります。
シミュレーション レーザーカット-フィル工具経路
レーザーカット-フィル工具経路は、形状の切り抜きまたは領域のマーキングに使用されます。
切り抜きはレーザービームのカーフまたは幅を考慮し、選択ベクトルが形成する正確な内部または外部サイズを保持します。形状はストライプまたはハッチングで塗りつぶされ、単純なシェーディング効果を作成します。
レーザーピクチャー工具経路
レーザー画像 ツールパスはレーザーを使用し、レーザーの出力を変化させることで、選択したビットマップのコピーをマテリアルの表面にエッチングします。
レーザー工具経路のシミュレーション
その他の全工具経路と同様に、レーザー工具経路はシミュレーションが可能です。ただしレーザー工具経路の場合はシミュレーションが素材を削除せず、代わりに現行シミュレーションモデルのサーフェスをマーキングします。このマーキングは、レーザーに燃焼された素材の焦げのシミュレーションを意味します。
レーザー、電力、素材、送り速度の組み合わせは多数存在するため、シミュレーションの較正が必要になる場合があります。これにより、シミュレーションの出力が実際の結果に一致します。較正は指定工具の最大燃焼率のプロパティを修正して実行可能です。これは、工具が100%の電力で素材を燃焼する最大速度です。そのため、値が大きいほどシミュレーションされる工具経路が濃くなります。この値は工具データベースで設定可能です。通常使用する素材と電力設定を使用してサンプルファイルを加工し、シミュレーションが要求する結果に一致するように最大燃焼率を調整することを推奨します。
レーザー用にポストプロセッサを適合
導入
レーザー モジュールを使用すると、新しいツール タイプの両方でツール データベース内のレーザーを表現できるようになり、また、新しいレーザー固有の戦略も可能になります。
レーザー モジュールは、レーザー ツールとツールパスに独立したレコードと変数を提供するようになりました。これらの出力は従来のルーター制御から分離されているため、ほとんどのマシンおよびコントローラーではルーターまたはレーザー ツールパスとシームレスに動作する単一のポスト プロセッサーを作成することが可能ですが、場合によっては、ポスト プロセッサーの物理構成を確認する必要がある場合があることに注意してください。使用するマシンはツールパスのタイプに応じて変更されます。
以前のポストプロセッサはレーザーモジュールでは正しく動作しません
レーザー モジュールのリリース前に、多くの変換キット メーカーが Vectric ポスト プロセッサを提供していたことに注意してください。これらは、プロファイリングなどの一部のルーター ツールパス戦略をレーザー ヘッドで使用できるようにする回避策を使用しました。ここに記載されている追加機能を明示的にサポートせずに作成されたポスト プロセッサは、正しく動作しません。
従来のポストプロセッサを拡張してレーザー ツールパスをサポートするには、通常 4 つの領域を変更する必要があります。
- 新しい
Power
変数のサポートを追加します。これは、新しいレーザー戦略で使用されます。 - 新しいレーザー固有のポスト プロセッサ ブロックを追加して、マシンとコントローラーに合わせてレーザー ツールパスを正しくフォーマットします。
- 既存のポスト プロセッサ ブロックを変更して、独立した電力とレーザー固有の動作を確保します。
- このポストがレーザー ツールパス戦略をサポートしていることを Vectric のソフトウェアに伝えるフラグを追加します。
次のセクションでは各領域を順番に扱い、GRBL gcode コントローラーを使用した例を示します。これらの例は、Vectric のソフトウェアにデフォルトで提供される grbl (mm & インチ) ポスト プロセッサからのものです。
パワー変数
Vectric のソフトウェアは、レーザー ツールパスの出力設定を 1 ~ 100% の範囲で出力します。特定のコントローラーに合わせてこの設定をフォーマットする方法を示すために、新しい変数を追加する必要があります。これは、生のパーセント値をコントローラーが必要とする数値範囲にスケールする機会でもあります。
サンプル
GRBL ベースのコントローラーの場合、レーザーの出力設定は通常、Gcode スピンドル速度制御コマンド「S」のエイリアスになります。レーザー モードでは、コントローラーは代わりにレーザーの出力を調整することにより、スピンドル速度制御の変更に応答します。コントローラー内で設定できますが、予想される最大の「S」値 (レーザー出力) のデフォルト設定は 1000 です。
したがって、GRBL の場合は、POWER 変数を gcode 'S' コマンドになるようにフォーマットし、その出力値を 1 ~ 1000 (デフォルトの 1 ~ 100 ではなく) の範囲になるように 10 倍にスケールする必要があります。 。
ポストプロセッサの変数エントリは次のようになります。
VAR POWER = [P|C|S|1.0|10.0]
このエントリをわかりやすく説明すると、ツールパスからの POWER 出力は、変数 [P] が存在する後続のポスト定義ファイルのあらゆる場所で使用する必要があると言っています。ただし、POWER 値が変化したときにのみコマンドを出力する必要があります (C)。ツールパス出力内の [P] 変数の場所をコマンド 'S' (S) に置き換えます。電力値は、小数点のない整数 (1.0) としてフォーマットし、デフォルトから 10 倍する必要があります。
新しいレーザー ポスト プロセッサ ブロック
レーザー制御を可能にするために、ポスト プロセッサーで使用できる新しいポスト プロセッサー ブロックがあります。これらは:
JET_TOOL_ON
- ツールパスでレーザーをオンにする必要があるときはいつでも出力しますJET_TOOL_POWER
- ツールパスがレーザー出力を変更する必要があるときはいつでも出力しますJET_TOOL_OFF
- ツールパスでレーザーをオフにする必要があるときはいつでも出力します
サンプル
GRBL の例では、3 つの新しいブロック タイプを追加しました。レーザーをオンにするために、GRBL は gcode M4 コマンドを利用します (通常はスピンドル方向を目的としていますが、レーザー サポートのために GRBL によって「再利用」されます)。上記で [P] として定義された POWER 変数を使用して、必要な電力値を提供できるようになりました。 JET_TOOL_ON
ブロックは次のようになります。
+---------------------------------------------------
+ Commands output when the jet is turned on
+---------------------------------------------------
begin JET_TOOL_ON
"M4[P]"
レーザーをオフにするために、GRBL は gcode M5 コマンドを使用します。
+---------------------------------------------------
+ Commands output when the jet is turned off
+---------------------------------------------------
begin JET_TOOL_OFF
"M5"
最後に電力そのものを設定し、GRBL の場合は電力を出力するだけです。
+---------------------------------------------------
+ Commands output when the jet power is changed
+---------------------------------------------------
begin JET_TOOL_POWER
"[P]"
既存のブロックを変更する
また、フィード移動を実行するときにパワーも出力するようにしたいので、これを行うには、 FEED_MOVE
ブロックを更新して [P] を含めます。
さまざまなフィード移動タイプの 全て に対してこれを行う必要があります。
さらに、レーザーがオンになっているときに発生する急降下の動きを避ける必要があります。従来のフライス加工またはルーティングの場合、プランジ移動の前にスピンドルをオンにする必要がありますが、レーザーの場合は、正確な Z レベルに移動した 後 だけをオンにすることが重要です (この問題は、「各ツールパス セグメントの先頭に「オーバーバーン」が追加されます)。これらの要件を正しく分離できるようにするには、プランジ移動または他のブロック タイプ (たとえば、ヘッダーにそれらが含まれているものもあります) からスピンドル コマンドを削除し、これらを明示的な SPINDLE_ON
& に分割する必要がある場合があります。 PLUNGE_MOVE
ブロック。これにより、これらの移動が非レーザー ツールパス ストラテジーに対してのみ、正しい順序で実行されることが保証されます。
サンプル
GRBL の場合、これはフィード移動ステートメントの末尾に単純に追加するだけです。
+---------------------------------------------------
+ Commands output for feed rate moves
+---------------------------------------------------
begin FEED_MOVE
"G1[X][Y][Z][P]"
POWER 変数を変更時のみ出力するように設定したこと (C) を覚えておいてください。そのため、定電力でのフィード移動の出力には、初期の変化する電力コマンドのみが含まれることに注意してください。一部のコントローラーでは、処理できるコマンドの数がツールパスとレーザー イメージの速度の制限要因になります。これは、可能な限り不必要なコマンドを ない 送信することで多少軽減できます。
個別の GRBL スピンドルとプランジ制御の場合、ブロックは次のとおりです。
+---------------------------------------------------
+ Command output after the header to switch spindle on
+---------------------------------------------------
begin SPINDLE_ON
"[S]M3"
+---------------------------------------------------
+ Commands output for the plunge move
+---------------------------------------------------
begin PLUNGE_MOVE
"G1[X][Y][Z][F]"
GRBL は M3 を使用してルーターまたはミルを制御していることがわかります。また、プランジ移動には、ランピングをサポートするためにマシンを X および Y 方向に移動する機能が必要であることにも注意してください。
ポストプロセッサをレーザー対応として明示的にマークする
最後に、ポスト プロセッサでは、ソフトウェア内でレーザー ポスト プロセッサとして選択できるように、新しいグローバル ファイル ステートメント LASER_SUPPORT="YES" を追加する必要があります。
これは、ポスト プロセッサが作成者によって完全なテストを受けた場合にのみ、一般的な使用のためにポスト プロセッサに追加されます。
サンプル
LASER_SUPPORT = "YES"
SketchUpファイル
.SKPの拡張子を持つSketchUpファイルは、加工に適した2DデータとしてAspireのジョブにインポート可能です(www.sketchup.com参照)。メニューバーのファイル ► ベクトルをインポート...コマンド、または作図タブのベクトルをインポートアイコンを使用します。SketchUpファイルからデータをインポートするには、データをインポートするために作成済みまたは開いたジョブが必要です。
SketchUpモデルは通常モデルの3D表現であるため、SketchUpインポーターはモデルを製造するための複数のオプションを提供します。
左側のSketchUpモデルを使用して、モデルをインポートするための主な2つの方法を説明します。
スクリーンショットに表示されているモデルは、Fine Woodworkingの「Google SketchUp guide for Woodworkers: The Basics」DVDの説明どおりに作成されたキャビネットです。このDVDはFine Woodworkingのサイト(www.finewoodworking.com)から入手可能です。VectricはFine Woodworkingと提携しておりません。ここではSketchUpモデルのインポートプロセスを説明するために、チュートリアルに沿って作成されたモデルのスクリーンショットを使用しているだけです。
インポートデータのレイアウト
最初のセクションには、以下のようにモデルからデータをインポートするための2つの主な選択肢([分解平面図]と[3方向-正面、上、横])があります。
分解平面図
このオプションではモデルの各コンポーネントを取得し、加工用に平坦にします。
このオプションを選択すると、複数のサブオプションが利用可能になります。
パーツ方向
このセクションは、Aspireが各パーツの上面と認識する面を制御します。
自動位置設定
モデルの各パーツで、外周に基づいて最大領域(穴などは無視)を持つ「面」が上面と認識されます。また、パーツは当該面がZ軸沿いに上向きになるように自動的に回転されます。この方法は、(ポケットのように)上面にある必要があるフィーチャーを特定の面に持たないシートグッズから製造されるモデルに最適です。
素材で設定
このオプションでは、モデルの各パーツの方向を明示的にコントロールすることができます。モデルのインポート時に上面に方向付けられる面を識別するために、SketchUp内で選択した素材や色を使用して各コンポーネント/グループの「ペイント」が可能です。このオプションの選択時には、ドロップダウンリストから上面の識別に使用された素材を選択します。指定素材のフェースを持たないパーツがモデル内で検出されると、当該パーツは最大面を上面にして方向付けられます。
パーツ間の隙間
最初にインポートされる場合のパーツ間の隙間を指定することができます。インポート後に、さらなるコントロールを持ち複数のシートに作用するAspireのネスティング機能を使用し、パーツを配置することができます。
3方向-正面、上、横
このオプションでは、以下のスクリーンショットのようにSketchUpモデルの「エンジニアリング用図面」スタイルのレイアウトを作成します。
モデルのサイズは保持され、多様なビューから製造するパーツの寸法を比較的容易に取得することができます。線の色は多様なモデルパーツが配置されているオリジナルのSketchUpのレイヤから取得されます。
円/円弧を作成
SketchUpはパーツの境界の真の円弧または円の情報を保持しません。多角形のSketchUp表現は低品質の加工結果の原因になるため製造上好ましくありません。そのため、Aspireはインポートされたデータに円と円弧を再フィットするオプションを提供します。
左上のスクリーンショットは、オプションが未選択の状態で、フィレット付きのコーナーと穴のあるパーツのインポート結果を表しています。「フィレット」は一連の直線セグメントから構成され、円状の穴は実際には直線に構成された多角形です。
右上のスクリーンショットは、オプションを選択(✓)して同じパーツをインポートした場合を表しています。この場合、「フィレット」は単一の滑らかな円弧で、円状の円は直線セグメントではなく複数の円弧で構成されています。この場合、両方のフィーチャーがより滑らかに加工されます。
インポートするデータ
多くの場合、SketchUpモデルには加工対象ではないパーツ(ヒンジやノブなど)が含まれていることがあります。また、異なる素材の厚さから加工するデータが含まれている場合には、異なる複数のパーツを異なるAspireのジョブにインポートする必要があります。インポートの対象をコントロールするために、ダイアログのこのセクションを使用して、特定のレイヤに配置されたモデルのパーツのみをインポートすることができます。
選択したレイヤのみをインポートするには、[選択したレイヤの可視データをインポート]オプションを選択し、レイヤからのインポートを指定するために該当するレイヤの隣のチェックボックスを選択します。各レイヤのパーツ数はレイヤ名の隣に表示されます。
SketchUp内で異なるレイヤにモデルの異なるパーツを容易に割り当て、Aspireへのインポート処理を補助することができます。以下のスクリーンショットは、サンプルから「Door」レイヤのデータのみをインポートした結果を表しています。
コンポーネント/グループ化
フォームのこのセクションでは、インポート時にSketchUpモデル内の「パーツ」のアドバンス処理を識別して対処する方法を指定します。
インポートされたパーツをグループ化
このオプションは、通常最も簡素なモデル以外のすべてに対して選択されています。これにより、インポート後の各モデル「パーツ」の選択、移動、ネスティングが容易になります。ネスティング等が終了したら、インポートされたデータをグループ解除し、個別フィーチャーの加工を可能にします。デフォルトで、Aspireは各SketchUpグループ/コンポーネントを単一パーツとして処理します。ただし、当該アイテムがその他のグループまたはコンポーネントを含む場合はその限りではありません。その場合、各最低レベルのグループ/コンポーネントが個別パーツとして処理されます。
グループ内に保持されるアイテムは、通常の方法でいつでもグループ解除することができます。右クリックメニューオプションの[オブジェクトをグループ解除し元のレイヤに戻す]を選択すると(アイコンまたはショートカット「U」の使用時にはデフォルトオプション)、ソフトウェアはグループ解除されたアイテムをSketchUpで作成された元のレイヤに戻します。
2つのアンダースコア(__)で始まるコンポーネントをまとめる
その他のグループ/コンポーネントを構成する「パーツ」を含む複雑なモデルを使用する場合、Aspireが当該パーツを認識できるようにモデルに作業を行う必要があります。この場合、単一パーツとして処理するグループ/コンポーネントに2つのアンダースコア(__)で始まる名前を設定します。例えば、車のモデルで「車輪」「タイヤ」「ハブナット」を単一パーツとして処理する場合、たとえそれらが各個別のコンポーネントであっても、SketchUpで当該パーツを単一グループにまとめて「__WheelAssembly」のような名前を付けます。このモデルがインポートされると、Aspireは__で開始する名前を持つグループ/コンポーネントを検出し、当該オブジェクトの後続のすべての子オブジェクトを同一パーツとして処理します。
外形境界を変更(平面ジョブのみ)
SketchUp には、個々の「パーツ」が互いに「突き合わされた」複数のコンポーネントで構成される「構築」スタイルがあります。以下のスクリーンショットは、そのようなコンポーネントを示しています。
このオブジェクトは、以下に示すように、上部のタブ、端のコネクタ、下部のサポートを表す多くの小さなコンポーネントで構成されています。
When は、名前を __ (2 つのアンダースコア) で始めることでインポート時にこれを単一の「パーツ」として扱うことができますが、インポートされたパーツを機械加工するのは依然として困難です。以下のスクリーンショットは、「外側の境界を置換」オプションがチェックされていない状態で Aspire にインポートされたパーツを示しています (✓)。画像内のパーツのグループ化が解除され、中心のベクトルが選択されています。
ご覧のとおり、外側の境界は「フィーチャ」ごとに個別のセグメントで構成されています。 Aspire にはベクトルの外側の境界を作成する機能がありますが、これを手動で行う必要がある場合は時間がかかる可能性があります。 「外側の境界を置換」オプションがチェックされている場合、各パーツ Aspire に対して ✓ は単一の外側境界を作成し、この境界の一部であったすべてのベクトルを削除しようとします。以下のスクリーンショットは、このオプションをオンにして同じデータをインポートした結果を示しています。 ✓ 今回はパーツのグループ化が解除され、外側のベクトルが選択されています。
このデータを直接加工する準備が整いました。このオプションの制限を理解することが重要です。大幅に遅くなる可能性があります。各パーツに堅牢な境界を作成すると、大量の処理能力が消費される可能性があります。境界とエッジを共有するフィーチャはすべて削除されます。この部品の上部のタブが「薄く」機械加工されていた場合、タブの下端が削除されているため、このアプローチは適切ではありませんでした。
重要
この新機能は、多くの SketchUp ユーザーが、Vectric Software を使用して SketchUp 設計から機械加工可能な部品に移行するのにかかる時間を大幅に短縮するのに役立ちます。 これらのオプションは便利なツールのセットを提供しますが、多くの場合、部品をツールパスに対応させる準備ができていることを確認するために追加の編集が必要になることを理解することが重要です。 オプションとその仕組みを理解すると、これらを念頭に置いて SketchUp でパーツを設計できるようになり、データのインポート後の加工時間を最小限に抑えることができます。
注記
Sketchup ファイルは、実行しているのと同じビット バージョンでのみ開きます。たとえば、32 ビット バージョンの Sketchup で保存されたファイルは、32 ビット バージョンのソフトウェアでのみ開きます。
成形工具経路
このアイコンは、成形ツールパス フォームを開きます。このフォームは、ドライブからツールパスを作成するために使用されます。
レールとプロファイル。ツールパスの加工の結果、事前に選択したドライブ レールに沿って、選択した断面プロファイルが押し出されます。 3D モデルを使用していないため、厳密に言えば、この結果は 3D 形状になりますが、2.5D ツールパスとして分類されます。
工具経路の位置
続いて、素材内の工具経路の位置を指定します。工具経路のZ高さは、選択した断面の高さで指定されます。スライダーを移動してインタラクティブに工具経路を配置、または編集ボックスに正確な値を入力することもできます。
注記
素材の厚さよりも高い断面の場合、輪郭の高さを許容するために[素材セットアップ]フォームで素材の厚さを変更する必要があります。またはフォームを終了し、成形工具経路の作成に使用している断面ベクトルの高さを素材ブロック内に収まるように編集します。
ドライブレール選択
立体化する輪郭がたどる工具経路のドライブレールを2Dビューから選択します。複数のレールを選択することができます。最後に選択されたベクトルが、立体化する輪郭になります。
2Dビューでレールベクトルがオレンジ色で表示されます。また、始点を表す緑色の正方形と、ベクトルの方向を示す矢印も表示されます。
方向と始点が希望どおりでない場合は、2Dビューでベクトルを右クリックしてを選択し、方向(ならびに開いたベクトルの場合は始点)の変更が可能です。
を使用して、いつでも現行セレクションをクリアすることができます。これにより、ドライブレール(ならびに断面が選択済みの場合は断面)が選択解除されます。これにより、フォームを終了せずに選択を変更することができます。
断面選択
ドライブレールを選択したら、成形用にドライブレールの周囲でスイープされる断面を選択します。この場合の断面は、開いた形状でなければなりません。
Ctrl を押したままにして断面を選択し、2D ビューで適切なベクトルをクリックすると、ドライブ レールと同様にオレンジ色に変わり、矢印と緑色の四角形が表示されます。さらに、ドライブ レールに赤い線が表示されます。これらは、シェイプがスイープされるベクトルの側を示します。これが正しくない場合は、前のセクションで説明したようにドライブ レールのベクトルを逆にする必要があります。
断面上の矢印は方向、緑色の正方形は始点を表します。断面の始点はドライブレールの始点に付随します。断面の始点の変更が必要な場合は、断面を右クリックし次図のように[輪郭を反転]を選択します。これにより、矢印方向が反転して緑色の正方形が移動します。また、工具経路の作成時にドライブレール上に効果的にハングされる断面の端末も変更されます。
注記
閉鎖ベクトル形状では、断面の輪郭は常に形状の外側にハングします。そのため、ドライブレールベクトルは常に工具経路作成対象の枠/フレームの内部エッジを表す必要があります。工具経路の作成方向を変更するには、閉鎖ベクトルドライブレール上で[レール方向反転]をクリックします。
工具選択
次に、成形の仕上げ加工を行う工具を選択します。一般的にはボールエンドミルまたはテーパーボールエンドミルになりますが、加工する形状により異なります。工具を選択するには、をクリックして工具データベースにアクセスします。選択工具として使用する工具が表示されている場合は、編集オプションを使用して、当該工具経路に対して工具設定を変更/修正することができます。
注記
生成される工具経路は、ドライブレールベクトルの方向で形状をたどります。 開いた形状の端末では、ステップオーバー距離でリフトされ、ステップオーバーしてからサーフェスに下降します。その後、反対方向でベクトル沿いに戻ります。この小型のリフトは接続移動によるパーツサーフェス上の傷を防ぎ、完成品の品質を向上させます。 閉鎖ベクトルでベクトルの長さのパスが完了すると、リフトとステップオーバーに続いて工具が輪郭形状に戻り、同一方向で加工を継続します。この方向は、ドライブレールベクトルを右クリックして[レールを反転]を選択し、ベクトル上の矢印方向を変更して反転可能です。
可変ステップ
一般的に、ステップオーバーの値は工具がステップオーバーする水平距離を指定します。これは、3Dモデルに投影されます。可変ステップを選択(✓)すると、Z軸を下向きに標準のパターンを投影する代わりに、断面輪郭ベクトルの形状に基づいてステップオーバーを調整します。急カーブ、鋭角、垂直エッジ付近などでは、複数のパスが非常に近くなります。このオプションにより、完成品の品質を向上することができますが、加工時間を増加する場合があります。
平坦部をスキップ
このオプションは、フォームの次のセクションで大型の領域切削工具が使用され、[平坦部を加工]が選択(✓)されると利用可能になります。このオプションがアクティブな場合、ソフトウェアは大型の工具で加工可能な断面輪郭の平坦部を識別します。[平坦部をスキップ]オプションの選択(✓)時にそのような領域が検出されると、 大型の領域切削工具経路による仕上げ加工の完了が推測される平坦部の再加工を回避します。
大型の領域切削工具を使用
このオプションを選択すると、2 つのツールを使用して形状を切り取ります。実際、大面積クリアランス ツールは 3D Z レベル荒加工ツールパスに似ており、最初に切断されます。ツール パラメータを使用して、選択したレールの方向に従って複数の深さの 2D ポケットを生成し、余分な材料を除去します。これは、材料が深すぎる場合や、選択した仕上げツールで直接切断するのが難しい場合に使用する必要があります。上と下に記載されているように、平坦な形状の工具でこのオプションを使用すると、平坦/水平領域を持つ断面プロファイル形状の加工時間と仕上げに非常に有利になります。
[より大きな領域のクリアランス ツールを使用する] オプションを使用すると、ソフトウェアは 2 つのツールパスを計算します。最初のツールパスには 2 つを区別するために [Clear] が名前に含まれます。[Clear] は、より大きな領域のクリアランス ツールを使用するツールに関連付けられたツールパスで、もう 1 つは [Clear] です。 、小さいツールを使用した仕上げツールパスです。 [Clear] ツールパスはマシン上で最初に実行する必要があります。
平坦部を加工
このオプションの選択(✓)時には、ソフトウェアは断面輪郭の平坦/水平領域の検出を試行します。指定した大型の領域切削工具が当該領域にフィットする場合は、荒加工工程の一部として加工されます。平坦工具を使用するとより良好な仕上げが行われ、加工時間も削減されます。このオプションの選択(✓)時には、仕上げ加工工具セクションで[平坦部をスキップ]を選択することができます。 これにより、後続の工具経路による当該領域の再加工を回避することができます。
注記
このオプションは、形状の平坦領域の加工公差の値をオーバーライドします。これにより、当該領域が余分な素材を残すことなく適切な深さまで加工されます。
ランプ切り込み動作
大型の領域切削工具では、パーツに垂直に切り込む代わりに指定距離でランプ進入可能です。一部の工具タイプでは、このアプローチはカッターを破損する熱の蓄積を削減します。また、スピンドルとZ軸ベアリングの負荷も削減します。
加工公差
加工公差は、大型の領域切削工具の使用が計算される際に成形輪郭に追加される仮想の厚みです。これにより、大型の工具で加工されるパーツに工具経路が余剰素材を確実に残します。
注記
[平坦部を加工]オプションの選択時には、[加工公差]は断面輪郭のその他の領域のみに適用されます。検出された平坦領域では、ソフトウェアは実際のサーフェスに切り込み、当該領域では加工公差の値を無視します。これにより、断面輪郭ベクトルで指定された厚さまで加工します。
鋭角を作成
このオプションの選択(✓)時に鋭角のあるレールで作業を行う場合、形成工具経路内の当該領域の除去をソフトウェアに強制することができます。次図では、閉鎖ベクトル形状でこのオプションを選択(✓)しています。 左側の標準コーナーは、工具経路が鋭角の周囲でロールオーバーしています。右側では[鋭角を作成]オプションにより、加工済みの形状で額仕立てスタイルが強制されています。
境界オフセット
このオプションを使用して、工具経路によるドライブカーブベクトルに平行なパーツエッジの超過を強制します。デフォルトで、ドライブレール沿いに立体化される選択輪郭ベクトルの端末エッジに工具中心が進行します。この距離を延長し、垂直または急なエッジで工具を輪郭形状のエッジまで強制することができます。これにより、工具経路が確実にエッジを超過し、輪郭工具経路で最終形状を切り抜くことができます。境界オフセットに入力された値により、工具が端末を超過するように強制します。輪郭の端末で垂直または非常に急なエッジが確実に加工されるようにするには、工具半径に小さな量(半径の10%程度)を追加した値を指定する必要があります。例えば、仕上げ加工に0.25インチ(6mm)の直径のボールエンドミルを使用する場合、少なくとも工具半径 + 10%である0.15インチ(3.6mm)の値を指定する必要があります。これにより、工具に形状のエッジの超過を強制することができます。荒加工に当該領域の加工を行わせるには、代わりに大型の領域切削工具サイズに基づいた値を使用します。
自動境界オフセットを使用
このオプションの選択時には、Aspireはたとえ輪郭が垂直/急なエッジで終了しても、工具が完全に輪郭の端末を加工するように境界オフセットを算出します。
位置と選択のプロパティ
セーフZ
高速/最大送り速度でカッターを安全に動かすことができるジョブ上の高さ。この寸法は、マテリアル設定フォームを開いて変更できます。
ホームポジション
加工の前後にツールが移動する位置。この寸法は、マテリアル設定フォームを開いて変更できます。
ベクトル選択
ツールパス ページのこの領域では、ベクトルのプロパティまたは位置を使用して、加工するベクトルを自動的に選択できます。また、この方法を使用してツールパス テンプレートを作成し、将来同様のプロジェクトでツールパス設定を再利用することもできます。詳細については、セクション ベクトルセレクターと高度なツールパステンプレートを参照してください。
名前
ツールパスの名前を入力することも、デフォルトの名前を使用することもできます。
自動ベクトル選択
他の多くのツールパスと同様に、成形ツールパスでは自動ベクトル セレクターを使用できます (詳細については ここ を参照してください)。モールディング ツールパスの場合、2 つの個別のセレクターがあり、1 つはレール用、もう 1 つはプロファイル用です。どちらも他のセレクターと同様に機能し、それらを使用するツールパス テンプレートとともに保存されます。
V-Carve工具経路
このアイコンは、必要な彫刻のタイプ、詳細、切削パラメータ、および ツールパスの名前を指定するために使用される V 彫刻ツールパス フォームを開きます。
加工深さ
開始深さ(D)はV-Carve工具経路が計算される深さを指定します。これにより、V-Carve/彫刻をポケット領域の内側で加工することができます。ジョブサーフェスに直接切り込む場合は、通常では開始深さは0.0になります。V-Carve/彫刻がポケット底部または段差領域に切り込む場合、ポケット/ステップの深さを入力しなければなりません。例えば、0.5インチの深さの底部にカービングまたは彫刻する場合、開始深さは0.5インチになります。
開始深さ(D)
開始深さ(D)はV-Carve工具経路が計算される深さを指定します。これにより、V-Carve/彫刻をポケット領域の内側で加工することができます。ジョブサーフェスに直接切り込む場合は、通常では開始深さは0.0になります。V-Carve/彫刻がポケット底部または段差領域に切り込む場合、ポケット/ステップの深さを入力しなければなりません。例えば、0.5インチの深さの底部にカービングまたは彫刻する場合、開始深さは0.5インチになります。
最大彫刻深さ(F)
選択(✓)時には工具が加工する深さを制限し、それは平坦底部カービングと彫刻に使用されます。
最大彫刻深さが未指定の場合、工具経路は以下のように全深さでカービングまたは彫刻を行うように計算されます。工具データベースで指定されたパス深さより工具が深く加工する必要がある箇所で、複数のZレベルパスが自動的に計算されます。
最大彫刻深さなし
最大彫刻深さ
2つの工具を使用した最大彫刻深さ
工具
ボタンをクリックすると、[工具データベース]が開きます。ここから使用するV-Carveまたは彫刻工具を選択することができます。詳細は、工具データベースのセクションを参照してください。
ボタンをクリックすると、[工具編集]フォームが開きます。このフォームでは、データベースのマスター情報を変更せずに、選択工具の加工パラメーターを変更することができます。V-Carveのデザインにボールエンドミル工具を使用することもできます。
領域切削工具を使用
エンドミル、ボールノーズ、または彫刻カッターを使用してデザインの大きな開口領域を加工する場合は、このオプションにチェックを入れます。ここでツールが選択されていないが、フラット深さが指定されている場合、選択した V カービング ツールは、V カービングだけでなく平らな領域をクリアするためにも使用されます。このセクションのすべてのツールは、V カービング ツール用の余裕を残します。これに従って、リストの最初の工具は可能な限り多くの材料を除去しますが、後続の工具は前の工具では適合しなかった領域のみを加工します。リスト内のツールの順序は、マシン上で実行される順序と一致する必要があります。
ボタンをクリックすると、[工具データベース]が開きます。ここから使用する領域切削工具を選択し、リストに追加することができます。
リストから選択工具を削除するには、ボタンをクリックします。
ボタンをクリックすると、[工具編集]フォームが開きます。このフォームでは、データベースのマスター情報を変更せずに、選択工具の加工パラメーターを変更することができます。
選択した工具をリスト内で上下に移動するには、上下矢印ボタンをクリックします。
領域切削工具オプション
素材の除去に使用される方法はオフセットまたはラスターで、最初の領域切削工具経路に使用することができます。ラスターの場合はラスター角度の入力が必要です。
各領域切削工具には、アップカットまたはダウンカットの加工方向を選択することができます。
ランプ切り込み動作を選択(✓)すると、最初の領域切削工具経路の切り込み動作にランプ進入を適用します。
これらのオプションはポケット加工フォームのオプションと同一です。
鋭角コーナーを選択(✓)すると、選択した彫刻工具を上昇させて狭小領域により小さな工具先端をフィットさせます。このオプションは、リスト内の2つ目以降の工具に利用可能です。
ベクトル始点を使用
このオプションが ✓ にチェックされている場合、プロファイルおよびオフセット ツールパス セグメントの開始点は、対応する境界ベクトルの開始点にできるだけ近くなります。それ以外の場合、これはプログラムに任せられます。
位置と選択のプロパティ
セーフZ
高速/最大送り速度でカッターを安全に動かすことができるジョブ上の高さ。この寸法は、マテリアル設定フォームを開いて変更できます。
ホームポジション
加工の前後にツールが移動する位置。この寸法は、マテリアル設定フォームを開いて変更できます。
ツールパスを3Dモデルに投影する
このオプションは、3D モデルが定義されている場合にのみ使用できます。このオプションをオンにすると、ツールパスが計算された後、3D モデルの表面に Z 方向に投影 (または「ドロップ」) されます。材料の表面下の元のツールパスの深さが、モデルの表面下の投影された深さとして使用されます。
注記
ツールパスが 3D モデルに投影されると、その深さは材料の底部を超えないように制限されます。
ベクトル選択
ツールパス ページのこの領域では、ベクトルのプロパティまたは位置を使用して、加工するベクトルを自動的に選択できます。また、この方法を使用してツールパス テンプレートを作成し、将来同様のプロジェクトでツールパス設定を再利用することもできます。詳細については、セクション ベクトルセレクターと高度なツールパステンプレートを参照してください。
名前
ツールパスの名前を入力することも、デフォルトの名前を使用することもできます。
開いたベクトルを結合
ベクトルを結合して閉じるこのアイコンは、作図タブのベクトル編集セクションに配置されています。
開いたベクトルが自動的に識別され、終点がユーザー定義公差内にある別のベクトルに結合または閉じられます。
どちらのビューでも使用可能
このツールは 2D ビューと 3D ビューの両方で使用できます。
2D ビューでは、ベクターをより直接的に表示できますが、3D ビューでは、3D デザインでベクターを操作したり、編集ボックスを活用したりするための柔軟性が高まります。
変形
このツールでは、標準のノード編集ツールを使用して変形包絡線を操作し、ベクトルやコンポーネントを曲げることができます。1つ以上のベクトルまたはコンポーネントを選択し、いずれかのツールモードを使用して初期の変形包絡線を作成することができます。
複数のオブジェクト
複数のベクトルまたはコンポーネントを一度に変形することができます。ただし、ベクトルとコンポーネントの組み合わせを同時に単一操作で変形することはできません。
変形包絡線が作成されると、ノード編集ツールを使用してノードとスパンの追加や編集が可能になります。包絡線の形状を変更すると、関連するオブジェクトが変更を反映して変形されます。
レイヤ
異なるレイヤに配置された複数のオブジェクトを変形する場合は、結果が最初に選択されたオブジェクトのレイヤに作成されます。
回転境界を使用
このオプションは、変形用に1つのみオブジェクトが選択されている場合に有効になります。選択ツールに示されているように、オブジェクトのローカル回転を使用します。
このオプションの選択時には:
- 初期の変形包絡線は、選択オブジェクトの変換された境界沿いに作成されます。
- 単一または複数のカーブ沿いに変形する場合は、オブジェクトがカーブ上でローカルな変換で変形されます。これは、回転されたオブジェクトを回転されたカーブ上で変形する場合などに有用です。
境界変形
このオプションは、複数のベクトルまたはコンポーネントを選択すると有効になります(ベクトルとコンポーネントを組み合わせることはできません)。この場合、変形包絡線は選択の周囲に作成可能な最近接する境界に基づいて作成されます。そのため作成される包絡線は、常に4つの線スパンと各コーナーの1つずつのノードから構成される長方形から開始されます。しかし標準のノード編集ツールを使用してこの包絡線を修正し、その内部の形状をそれに基づいて変形することができます。
単一カーブ沿い
このオプションは、選択の最終アイテムがカーブの定義に使用可能な開いたベクトルで、その上でその他の選択されたオブジェクトが変形される場合のみ利用可能になります。変形されるオブジェクトとして1つ以上のベクトル、またはコンポーネントが利用可能ですが、両方を同時に使用することはできません。
通常このオプションは、元の選択内のカーブに一致するようにオブジェクトを曲げる場合に使用します。変形カーブ自体はこの操作では変更されません。
変形をオブジェクトに合成
オブジェクトの変形が終了すると、ノード編集は常にオブジェクトの変形包絡線に関連します。変形済みのベクトルを直接編集する場合は、まず形状に変形を永久的に適用する必要があります。
オブジェクト変形ツールの利用時に、変形包括線と持つオブジェクトを選択すると、ボタンが利用可能になります。このボタンをクリックすると、現行の変形が永久的に適用されます。そのため、新規設定を使用したオブジェクトの再変形や、形状のノード編集が可能になります。
コンポーネントを合成
複数のグループ化または変形されたコンポーネントの修正にこのツールを使用するには、まず選択コンポーネントを単一オブジェクトに合成する必要があります。詳細については、コンポーネントを合成を参照してください。
どちらのビューでも使用可能
このツールは 2D ビューと 3D ビューの両方で使用できます。
2D ビューでは、ベクターをより直接的に表示できますが、3D ビューでは、3D デザインでベクターを操作したり、編集ボックスを活用したりするための柔軟性が高まります。
やり直し操作
元に戻すコマンドを使用して元に戻されたステップを、元に戻す機能を使用し始めた段階まで順に進めます。
3D ロータリープロジェクトのモデリング
3D クリップアートを使用して 2D デザインを精緻化する
このセクションでは、 2D ツールパスを使用したシンプルな回転モデリングで紹介されている基本的な溝付き柱に 3D クリップアートを追加する方法を説明します。
3D 回転モデルを始める簡単な方法は、 Aspireで提供される装飾的なクリップアートを追加することです。このプロセスは、クリップアートを片面または両面プロジェクトに追加するのとよく似ていますが、ラップ回転加工に特有の追加の考慮事項がいくつかあります。
まず、 「クリップアート」タブに切り替えます。次に、クリップアートの一部を選択し、ワークスペースにドラッグ アンド ドロップします。 Aspireには次のメッセージが表示されます。
このメッセージを理解するには、クリップアートをインポートした後のモデルの平面図を考慮する必要があります。 オートラッピング ボタンをクリックすると、フラット ビューにアクセスできます。
見てわかるように、モデルには平面上に選択された装飾部分のみが含まれています。柱は明らかに円柱状の固体ですが、これまでは 2D ツールパスのみを使用して円柱の表面に詳細を彫刻していました。したがって、機械加工されたピースが円筒状の固体であるという事実は、ブランク自体が円筒状の固体であるという事実からのみ導出されます。 Aspireを使用すると、3D モデルでソリッド ボディを記述することもできます。
この例では、柱の本体を定義するのではなく、表面に装飾部分を配置するだけが目的です。 Aspireでは、ボディをモデル化しておらず、表面に配置される可能性のあるクリップアートを配置していることがわかります。メッセージに「はい」と応答すると、コンポーネントを使用して表面を装飾することが意図していることを確認できます。
注記
上記のメッセージは、3D モデルが空の場合にのみ表示されます。ユーザーの選択に関係なく、このプロジェクトではこのメッセージが再度表示されることはありません。
必要に応じて、さらに多くのクリップアートを配置できます。その後、3D ビューを検査できます。設計が完了したら、ツールパスを作成します。 3D 荒削りツールパスを作成するには、 3D荒加工ツールパスを使用します。次に、 3D仕上げ工具経路を使用して 3D 仕上げツールパスを作成します。どの軸が回転しているかを覚えて、特定のアプリケーションに最も適した設定を選択します。回転軸の速度が直線軸よりも遅い場合、軸の選択が特に重要になることがあります。
この例では、追加された装飾クリップアートは凹んでいませんでした。つまり、3D 加工後、クリップアートが平面から「浮き出て」しまうため、クリップアートの周囲の平らな領域が凹んでしまいます。したがって、既存の 2D ツールパスを投影する必要があります。これは、[ツールパスを 3D モデルに投影] オプションを選択し、ツールパスを再計算することで実現できます。
テーパー柱の作成
ここでは、前項の基本設計を変更してテーパ柱を作成する方法を説明します。
これまでのところ、表面の詳細のみがモデル化されています。テーパー形状を作成するには、表面の詳細に加えて、形状の「本体」をモデリングする必要があります。この目的のために、ゼロ平面コンポーネントを使用できます。ロータリージョブの場合は自動的に追加されます。
ゼロ平面コンポーネントをダブルクリックして コンポーネントプロパティを開きます。 [ベースの高さ]ボックスに「0.8」と入力します。傾斜オプションを選択します。 [Tilt] セクションの [Set] ボタンをクリックし、2D ビューに切り替えて、左中央をクリックし、次に右中央をクリックします。角度を 3 度に設定します。
モデリング平面はコンポーネントをサーフェス上に配置するために調整されているため、コンポーネントのボディが「膨張」しないように再度調整する必要があります。そのためには 素材セットアップ フォームを開きます。モデル内のギャップが 0 になるまで、スライダーを下に移動してモデリング平面を調整します。
テーパー形状をモデリングすると、柱の 3D モデルが目的の形状になります。ただし、以下に示すように、狭い部分のクリップアートは歪んでいます。これを修正するには、ラップされた次元でコンポーネントを引き伸ばして歪みを補正する必要があります。
上で示した歪みはツールパスにも当てはまります。つまり、ラップされたツールパスはブランクの表面でのみ平らなツールパスと一致します。ツールパスが回転軸に近づくほど (つまり深くなるほど)、ツールパスはさらに「圧縮」されます。この事実は 3D ツールパスに重大な意味を持ちます。以下に示す例を考えてみましょう。
モデルのさまざまな部分で直径に大きな違いがある場合にわかるように、モデル全体に対して 1 つの 3D ツールパスを生成すると、ラップされたツールパスが過度に圧縮されます。したがって、通常は、直径が大きく異なる領域の境界を作成し、直径ごとに正しい設定を使用して個別のツールパスを生成する方が良いでしょう。
回転形状のモデリング
このセクションでは、回転シェイプを作成するための基本的なテクニックを紹介します。
回転した形状のモデリングは非常に簡単です。これには、目的の形状のプロファイルを表すベクトルと 2レールスイープツールが必要です。
まず、新しい 回転ジョブを作成します。次に、利用可能な描画ツールを使用してプロファイルを描画するか、プロファイル ベクトルをインポートします。この例では、以下に示すように、チェスのポーン プロファイルを使用しました。
2レールスイープ ツールを開きます。ロータリー ジョブが作成されると、ソフトウェアは「2Rail スイープ レール」と呼ばれる特別なレイヤーを挿入します。ジョブの側面には、回転軸に垂直な 2 本の青い線が含まれています。
両方のレールを選択し、 選択を使用 ボタンをクリックします。レールが強調表示されます。次に、プロファイル ベクトルを選択し、[適用] をクリックします。 3D ビューを調べて結果を確認します。
断面モデリング
このセクションでは、 ベクトルのアンラップを使用して目的の形状をモデル化する方法を説明します。
Vector Unwrapper は、回転軸に沿ってプロファイルをモデル化するよりも、目的の断面を指定する方が直感的である場合に便利です。このツールは、断面を表すベクトルをプロファイル ベクトルに変換し、その後 2 レール スイープ ツールで使用できるようにします。
六角形の柱を作成するとします。新しい 回転ジョブを作成することから始めましょう。この例では、ジョブの直径は 6 インチ、長さは 20 インチです。 X 軸は回転軸で、Z 原点は円柱軸上に配置されています。
多角形作成 ツールを使用して六角形を作成する必要があります。このベクトルは断面として機能し、2D ビュー内のどこにでも配置できます。この例では、材料ブロックの直径は 6 インチなので、形状の半径は 3 インチを超えることはできません。
形状が作成されたら、それを選択して ベクトルのアンラップを開きます。このツールは、回転軸がプロファイルと交差する場所に十字線と、材料ブロックの直径を示す円を表示します。これは、そのような断面プロファイルを持つ形状が現在の材料ブロックに適合するかどうかを判断するのに役立ちます。
この例では、 輪郭の中心を使用 オプションが使用されました。これは、回転軸がベクトルの 境界ボックスの中心に配置されることを意味します。一連の非常に短い線分を使用する代わりに、 アンラップされたベクトルを単純化する オプションにチェックを入れてベジェ曲線をフィットさせることもできます。 適用 を押すと、以下に示すように、選択した断面のラップされていないバージョンが作成されます。
この例は、X 軸の周りを回転する円柱のラップされていないベクトルを示しています。回転軸が Y に沿って整列している場合、アンラップされたベクトルは水平になります。ラップされていないプロファイルの両端に「脚」があることに注意してください。これらは、次のステップで正しい高さが使用されるようにするために必要です。
このツールは、「Unwrapped Vectors Drive Rails」というレイヤーを自動的に作成し、その上に 2 本の青い線ベクトルを回転軸と平行にジョブの側面に配置します。プロファイルを押し出すには、 2レールスイープツールを開きます。次に、上部レール、次に下部レール (Y 軸が回転軸の場合は左右) を選択し、「選択を使用」ボタンをクリックして選択を確定します。レールが強調表示されます。次に、ラップされていないベクトルをクリックして適用を押します。 3D ビューには、このセクションの冒頭で見られる六角柱が表示されます。
モデリングプレーン
望ましい断面は、モデリング平面が円柱の中心に配置されている場合にのみ実現されます。これは、モデル内のギャップがマテリアル セットアップ フォームで 0 として報告されることを意味します。そうしないと、結果として得られるモデルの直径が不正確になり、断面が丸くなります。
Vector アンラッパーは単純な形状に限定されません。原則として、凸形状と特定の凹形状を使用することは常に可能です。以下の例は、ラップされていない心臓のプロファイルを示しています。
問題の断面が凹面の場合、形状の中心から始まり境界上の点に接する直線を想像できます。 2 番目の点が境界に沿って移動し続け、各線が境界上の別の点と交差していない場合は、この断面を使用できます。線が境界上の複数の点と交差する場合、断面のこの部分は正しく表示されません。
これまでのすべての例では、単一の断面が使用されていました。ただし、複数の断面を使用することも可能です。
別の断面を取得して、Vector Unwrapper を開いてみましょう。次に、回転軸ハンドルを中心から少し下にドラッグします。スナップが有効な場合は、以下に示すように、回転中心の位置決めに使用できます。
ラップされていない別の断面があれば、2 レール スイープ中に両方を使用することができます。たとえば、ラップされていない心臓のプロファイルを左側に 2 回、右側に 2 回配置できます。 2 番目のアンラップされたプロファイルは、中央に 2 回配置できます。このような配置により、以下に示すように形状モーフィングが発生する可能性があります。
テキスト選択
テキスト選択ツールを使用して、カーニング、線の間隔、円弧上のテキストの曲率を調整します。テキストは赤紫色の線で表示され、テキストを曲げるための2つの緑色のハンドルが中央に配置されます。
カーブ上に選択されたテキストが配置されると、テキストを曲げることができないためハンドルは表示されません。
文字のカーニング
インタラクティブなカーニングおよび行間カーソルは、文字または行の間に配置されると表示されます。
インタラクティブな文字カーニングを使用すると、隣接する文字のペアがより自然に収まるようにデフォルトのテキストを変更できます。上に示した典型的な例では、大文字の WAV が隣り合って配置されており、デフォルトのスペースが過剰になっています。
2 つの文字の間にカーソルを置き、マウスの左ボタンをクリックして隙間を閉じます。
シフト キーを押しながらマウスの左ボタンをクリックすると、文字が離れて移動します。
カーニング中に Ctrl キーを押し続けると、クリックごとに各文字が移動する距離が 2 倍になります。
シフト キーと Ctrl キーを同時に押してマウスの左ボタンをクリックすると、文字がより大きな増分で互いに近づきます。
上記の組み合わせのいずれかを使用して 代替を押し続けると、行上のすべての文字ペア間にカーニングの変更が適用されます。
線の間隔
線の間隔を修正するには、線の間にテキスト編集カーソルを配置します。これにより、線の間隔カーソルに変化します。
左マウスボタンをクリックすると、隣接するテキストの線を近づけます。
シフトキーを押しながら左マウスボタンをクリックすると、線を離します。
Ctrl キーを押しながら左マウスボタンをクリックすると、各クリックごとの移動量が2倍になります。
シフトキーとCtrl キーを同時に押しながら左マウスボタンをクリックすると、より大きな増分で文字を離します。
テキストを曲げる
いずれかの緑色のハンドルにマウスオーバーすると、インタラクティブ回転と移動カーソルが表示されます。これにより、文字を上向きまたは下向きに曲げることができます。
下部の緑色のボックスをクリックアンドドラッグすると、テキストが下向きに曲げられます。
上部の緑色のボックスをクリックアンドドラッグすると、テキストが上向きに曲げられます。
テキストは容易に水平位置に戻すことができます。
テキストを曲げると、テキストの回転や移動を行うための赤色と青色のハンドルが表示されます。
移動
テキストの移動には2つの白色のハンドルを使用します。一方はテキストの中央、もう一方は円弧中心に配置されます(円弧が浅い場合は画面外になる場合もあります)。
回転
赤色のボックスをクリックアンドドラッグして、円弧の中心を基準にテキストを回転します。
Ctrl キーを押しながら行うと、15°の増分で回転します。これにより、わずかに移動した後でも、水平または垂直の四分円にテキストを正確に配置することができます。
円弧半径を変更
青色のボックスをクリックアンドドラッグすると、円弧の中心を移動せずに半径を変更することができます。
円形配列コピー
このツールは、選択オブジェクトのコピーを作成し円または部分円の周囲に配置して、パターンの繰り返しを自動作成します。コピー数は直接入力可能です。
回転中心
これは、コピーして貼り付けるときにオブジェクトが回転する絶対 XY 座標です。デフォルトの回転ポイントは選択範囲の中央です。このフォームの X および Y 編集ボックスを使用するか、選択したジオメトリをクリックして変換グリップを表示し、中心のジオメトリをダブルクリックしてピボット ポイントを表示し、関連付けられたピボット ポイント ハンドルをドラッグすることによって、回転の中心座標を明示的に設定できます。 2D ビューで選択した場合:
回転コピー
次図のように、コピーされたオブジェクトを円の周囲に配置する際に回転するか否かを指定します。このオプションの選択時には、各コピーが円の位置に基づいて回転されます。未選択の場合は、各コピーが元の選択されたオブジェクトの方向を保持します。
角度
合計角度
このオプションの選択時には、アイテム数が[合計角度]で分割され、各オブジェクト間に増分角度が与えられます。
ステップ角度
このオプションの選択時には、当該角度 x アイテム数として選択ベクトルのコピーに使用されます。
注記
負のステップ角度では、コピーは反時計回りに行われます。正のステップ角度では、コピーは時計回りに行われます。
どちらのビューでも使用可能
このツールは 2D ビューと 3D ビューの両方で使用できます。
2D ビューでは、ベクターをより直接的に表示できますが、3D ビューでは、3D デザインでベクターを操作したり、編集ボックスを活用したりするための柔軟性が高まります。
工具経路をプレビュー
計算済みの工具経路のプレビューにより、素材の加工時に実際に生成される様子を確認することができます。3Dプレビューモードでは、異なる素材タイプでジョブを表示したり、加工済みの領域を色付きで表示することもできます。
アクティブシート
アクティブ シート ラベルには、現在アクティブなシートが表示されます。各シートに異なるマテリアル設定を与えることができます。アクティブ シートは、2D ビュー内をクリックするか、ツールパス ツリーのドロップダウン メニューを使用して切り替えることができます。
材料の選択
カラー パレット アイコンをクリックすると、[マテリアルの外観] ダイアログがポップアップ表示され、視覚化のために 3D シェーディング イメージの外観を編集できます。プルダウン リストには、3D モデルをシェーディングするためのさまざまなマテリアル タイプが用意されています。
単色を使用する
これを選択すると、リストの下のカラーピッカーからマテリアルの色を選択できます。
素材を使用
ユーザーは、リスト上の適切な位置をクリックすることで、定義済みのマテリアル効果のリストから選択できます。これには、木目、金属効果、石、プラスチックなど、さまざまな効果が含まれます。
カスタムマテリアルの追加
リスト自体を使用して、追加のマテリアルをライブラリに追加できます。 <Create new category...>を使用して、テクスチャをグループ化するカテゴリ (フォルダー) を追加できます。また、 <Add new texture...>を使用して、任意のカテゴリの下に追加のテクスチャを追加することもできます。
あるいは、ジョブをレンダリングするマテリアルまたは画像の画像ファイル (JPG、BMP、または TIF) を「アプリケーション データ フォルダ」内のテクスチャ フォルダにコピーすることもできます。プログラム内からアプリケーション データ フォルダを開くには、[ファイル] ► [アプリケーション データ フォルダを開く] メニュー コマンドを使用します。
シェーディング テクスチャは、インターネットやクリップアート ライブラリなどのソースから取得することも、デジタル写真やスキャンした写真から独自に作成することもできます。高品質の結果を得るには、画像は約 1000 ピクセル x 1000 ピクセルである必要があります。テクスチャ画像は、ジョブの最長辺に合うように、X と Y に比例して拡大縮小されます。
加工済みの領域の色
素材色
この設定では、上部で定義した素材を使用してプレビューする領域を色付けします。これにより、加工済みの領域の個別素材設定を効果的に無効にすることができます。
共通塗りつぶし色
すべての加工領域を選択した色でペイントします。関連するプルダウン リストを選択すると、デフォルトの色の選択フォームが開きます。プリセットカラーのいずれかをクリックするか、 をクリックして完全なカスタムカラーを作成します。
工具経路色
このオプションの選択時には、各工具経路に個別の色を割り当てることができます。色選択フォームから[塗りつぶしなし]を選択すると、現行の工具経路は素材色を使用して表示されます。
当該工具経路を塗りつぶす色を選択します。これにより、プレビュー時に工具経路のカービングが行われると、領域にその色が適用されます。個別の色を割り当てると、該当する色の小さな正方形が工具経路リストの名前の隣に表示されます。これは、各工具アイコンの左上に表示されます。
透明度
透明度モードを使用してプレビューのシェーディングを行い、背面からライトがあてられた半透明の素材を表示することができます。最も薄い素材の領域が最も明るく表示され、素材が厚くなるにつれて明るさが減少します。
透明モードはいかなる素材でも利用可能で、すべてのソリッド色を使用することができます。素材の明るさは素材の厚みが0である白色から、最も厚い素材で選択した色が完全に表示されるまで変化します。
透明度の変化は部屋の環境光、透明度の背面のライトの強度、使用する素材のプロパティなど多くの要因で変化します。透明度オプションの隣のスライダーを使用して、最適な値に調整することができます。
次図は明るさのスライダーによる調整の効果を表します。白色の素材が選択されているため、スライダーを左から右に移動すると、高コントラストから背面ライトが未適用であるかのようにはるかに明るく変化します。
工具経路プレビューツール
工具経路をプレビュー
選択した工具経路が素材に切り込む様子を表示します。
シミュレーションのプレビューコントロール
プレビューコントロールは、工具経路のビデオのような再生コントロールを提供します。このモードを使用して、工具移動を順に解析することができます。プレビューコントロールを開始するには、実行、シングルステップ、リトラクトまで実行のいずれかをクリックします。
全ての面をプレビュー
両面環境で作業を行う場合に「両面ビュー」に切り替えずに、両面素材に切り込む計算済みの全工具経路を表示します。このオプションは、単一面での作業時にはグレーアウトされます。
全工具経路プレビュー
このオプションは、材料に切り込む計算されたすべてのツールパスをアニメーション化します。
可視工具経路をプレビュー
表示中の全工具経路をプレビューします。
プレビューをリセット
素材をソリッドブロックに戻します。
プレビューイメージ保存
3DウィンドウのイメージをBMP、PNG、JPG、GIFファイルのいずれかで保存します。
回転とスピン
回転ツールを使用して、断面(開いたベクトル)を回転して3Dコンポーネントを作成することができます。
回転
回転は輪郭を取得して始点から終点までの線を中心に回転し、丸型の対称形状を作成します。形状を回転するには、回転するベクトル断面を選択して回転オプションを使用します。使用する断面は、作成する形状のシルエットを表す必要があります。をクリックして3D回転形状を作成します。
回転される輪郭は、2つの終点間の線の下にあっても問題ありません。
スピン
スピンは輪郭を取得して断面の左端を中心にスピンし、断面の輪郭形状に基づいて円状コンポーネントを作成します。形状をスピンするには、左端を基準にスピンさせるベクトル断面を選択し、をクリックして3Dスピン形状を作成します。
注記
スピンツールは常に左端を基準にスピンを行います。そのため、スピン形状の作成にスピンされるベクトルを収めるために、ベクトルをジョブの右側に移動する必要がある場合があります。
一般的なモデリングオプション
ソフトウェア内のすべての主要なモデリング ツールは、共通のコマンド セットを使用して、作成中のコンポーネントに名前と結合モードを割り当てます。また、フォームに設定を適用したり、形状をリセットしたり、新しいコンポーネントの作成を開始したり、閉じて機能を終了したりするオプションも使用します。
他のコンポーネントと組み合わせて...
このセクションには、コンポーネントに名前を付け、コンポーネント ツリー内の他のオブジェクトと組み合わせる方法を制御できるオプションが含まれています。
リセット
ボタンをクリックすると現在のシェイプが削除されます。フォームを閉じる前にこれを行うと、現在の選択からコンポーネントが作成されなくなります。これをクリックすると、現在選択されているベクトルまたはコンポーネントのセットは保持されます。
適用
ボタンをクリックすると、選択した設定に基づいてシェイプが作成されます。フォーム内でさまざまなパラメータを選択し、[適用] をクリックして更新することで、コンポーネントの編集を続行できます。
新しいコンポーネントを開始
ボタンをクリックすると、作成されたコンポーネントの状態が保存され、すべてのコンポーネント/ベクターの選択が解除され、新しいコンポーネントで作成プロセスが再度開始されます。この場合、フォーム内の値とオプションは、閉じるまで保持されます。
閉じる
ボタンをクリックするとフォームが閉じ、モデリング タブのアイコンと更新されたコンポーネント ツリーに戻り、変更が反映されます。作成したシェイプを削除する場合は、元に戻すアイコンをクリックするか、キーボード ショートカット Ctrl+Z キーを使用して元に戻すことができます。
パーツのネスティング
ネスティングツールは、(ユーザー定義パラメータに基づいて)算出可能な最も効果的な方法で、ベクトル形状をユーザー定義領域内に自動的にフィットします。デフォルトで、ベクトルがフィットされる領域は現行ジョブサイズになります。ただし、ネスティング領域としてベクトルの選択も可能です。これは複数の形状の配置および加工時に、素材の使用量と工具経路の効率を最適化するための強力な方法です。
オブジェクト選択
ネスティング ツールを使用すると、開いたベクトル、閉じたベクトル、テキスト、コンポーネントを選択できます。
選択すると、オブジェクトがパーツを形成し、パーツの外側の境界が太い線で強調表示されます。
パーツを形成する基本は重ね合わせです。選択したオブジェクトに別のオブジェクトが含まれているか、重なっている場合、それらは同じパーツとみなされます。
工具とクリアランス設定
フォームのこのセクションの設定は、ネスティングされた各ベクトル同士の間隔を指定します。また、ネスティング領域のエッジまでの距離も制御します。
工具直径(D)
ネスティングを行うベクトルの輪郭加工(切り抜き)に使用する工具直径を入力します。これがネスティング後に形状間に残される最短距離になります。
クリアランス(C)
クリアランス値は、指定されたツール直径と組み合わされて、ネストされた形状間の最終的な最小間隔が作成されます。たとえば、0.05 インチのクリアランスと 0.25 インチのツール直径を組み合わせると、0.3 インチの最小間隔ギャップが作成されます (0.05 + 0.25 = 0.3)。
境界の隙間
境界の隙間値は、ベクトルのネスティングに使用される領域のエッジに適用されます。この値は当該形状のエッジ周りのクリアランス値に加えられ、ネスティング境界に関してパーツがネスティングされる最短距離を作成します。
ネスティングオプション
このセクションのオプションは、定義されたネスティング領域に形状をフィットする方法を指定します。
回転を試す
選択(✓)時には、ベクトルを回転してより良好なフィット方法を試行します。ソフトウェアが使用する回転の増分は、回転ステップ角度に基づきます。
ミラーを試す
選択(✓)時には、選択形状のより効率的なネスティングを試行するために、ベクトルのミラー(反転)を許容します。このオプションは、パーツの加工方向が重要ではない場合のみ選択(✓)します。
他のパーツ内への配置を許容
選択(✓)時には、中心に隙間のある形状の内部領域内のネスティングを許容します。
このオプションがアクティブな場合、ネスティングに考慮される内部領域はハイライト表示されます。
両面ネスティング
このオプションは両面プロジェクトのみで利用可能になり、同時に両面のネスティングを実行することができます。このオプションがアクティブな場合、アクティブ面で選択中のオブジェクトと交差する反対側に表示されている全オブジェクトが含まれます。
このモードの使用時には、切り抜き輪郭を含む面での選択を推奨します。
パーツが選択されると、含まれている反対側のベクトルが次図のようにハイライト表示されます。
純正部品を取り外します
このオプションがチェックされている場合、元のパーツはネスト内で複製されるのではなく、ネスト内で削除されます。
フィラーパーツ
フィラー パーツとして使用するベクターを選択し、「フィラー」チェック ボックスにチェックを入れて、[適用] をクリックしてこれを設定します。フィラー パーツ ベクトルには緑色のアスタリスク (*) が付けられます。
ネスティング プレビューを適用すると、他のネスティング パーツで埋められていない領域は、残りのシート スペースに収まるようにできる限り多くのフィラー パーツで埋められます。
シートオプション
ネスティング開始
ネスティングを開始するコーナーを定義します。4つのオプションから選択可能です。
ネスティング方向
シート内に配置された後でパーツが進む方向を選択します。例えとして、選択されたコーナーから任意の軸でシートを埋め始め、別の定義された軸(XまたはY)沿いに進んでいきます。
パーツプロパティ
特定のアイテムが複数必要な場合、2Dビューから当該アイテムを選択します。コピー数ボックスに必要な数を入力し、をクリックします。これにより、ネスティング時に作成されるアイテムのコピー数が選択されたベクトルに緑の数字で表示されます。異なる形状または形状のグループに異なるコピー数を割り当てることができます。複数回のコピーを防ぐには、コピー数を1に戻してをクリックします。
巣の境界
ネスト境界は、ネスト境界を表すベクトルを持つレイヤーを選択することで指定できます。複数のベクトルを使用して、ネストから除外される穴や領域を表現することができます。ネスト プロセスでは、ネストされたオブジェクトを境界層のベクトル内に配置しようとします。
ネスティングシート
より複雑なネスト要件の場合は、ネストされたパーツを既存のシートに配置する方法や、より多くのパーツを収容するために既存のシートの新しいコピーを作成する方法を定義できます。デフォルト設定を編集するには、「カスタマイズ」ボタンをクリックします。
カスタム シート選択フォームには、ネストする必要があるシートのリストが表示されます。
モデルをスライス
スライス機能を使用して、合成モデルをZスライスに分割することができます。各Zスライスはコンポーネントになります。この機能は、マシンガントリーのZ深さ、工具の加工長さ、または使用する素材の厚さを超過するパーツの加工が必要な場合に使用します。CNC上で切削されたスライスを再アセンブリし、完全な深さの完成品を作成することができます。
この機能が実行されると、各スライスはコンポーネントツリー内でコンポーネントになります。その後、任意の位置に移動して工具経路を計算することができます。次図の例では、左図は3インチの厚みのホタテ貝のコンポーネント、右図ではオリジナルを1.5インチの厚みにスライスした、2つの分割コンポーネントを示しています。
注記
スライスモデルコマンドの使用前に、この操作に含めない全コンポーネントを非表示にする必要があります。
アイコンをクリックするとスライスモデルフォームが表示されます。このフォームを使用して、作成されるスライスの数と厚さを指定します。フォーム上部には、現行合成モデルの厚さや現在加工用に定義されている素材の厚さなどの一部の参照情報が表示されます。
モデルをスライス
モデルをスライスセクションを使用して、初期スライスを設定することができます。初期スライスは、後ほどスライス高さセクションでカスタマイズ可能です。
初期スライスの設定には、標準のスライスの厚さを設定する方法と、固定数のスライスを設定する方法があります。
スライスの厚さ
このオプションを選択し、デフォルトのスライスの厚さを指定します。上からチェックボックスを使用して、スライスの方向を上からまたは下からに指定することができます。各スライスは指定された厚さになります。ただし、最終スライスは全スライスの取得後に残された厚さになります。上からが選択されると、最終スライスが下になります(厚さが他より薄くなる可能性あり)。上からが選択解除されると、最終スライスが上になります(厚さが他より薄くなる可能性あり)。
スライス数
選択(✓)時には、特定数のスライスにモデルを分割します。スライスの厚さは、指定されたスライス数で合成モデルの厚さを分割して指定されます。これは、(素材の厚さに関連しない場合など)スライスの厚さが重要ではない場合に有用です。
例
合成モデルの厚さが3.96インチでスライス数を3に指定すると、ソフトウェアは1.32インチの厚さの3つのコンポーネントスライスを作成します。
境界ベクトルを作成
選択(✓)時には、スライサーが各スライスに対してベクトル境界を作成します。これは、各パーツの切削に後続加工領域の定義が必要な場合に有用です。境界ベクトルは、2Dビューで関連するモデルスライスのコンポーネントプレビューと同じレイヤに配置されます。
モデルをスライス
をクリックすると、フォーム内で指定した選択を適用して、合成モデルの各スライスを表すコンポーネントが作成されます。
注記
コンポーネントツリーは、新規スライスコンポーネントに加えパーツの元のコンポーネントのコピーを保持します。元の形状に全スライスが追加されるため、モデルが非常に厚く表示される場合があります。追加の操作を行う前にこの時点で、コンポーネントの削除、非表示、移動が可能です。
スライス高さ
スライス高さセクションは、各個別のスライス高さの詳細を制御します。これにより、スライス数のカスタマイズが可能です。
スライス高さコントロールは以下のパーツから構成されています。
- 高さバー:スライス高さの視覚インジケーターを提供します。
- スライスリスト:Z値を使用したスライス高さのリストです。
スライス高さセクションは、モデルのスライスが行われる値を編集するために使用され、スライス自体の編集は行いません。
スライスの厚さを制御
スライスリストから特定のスライス高さを選択し、更新してからをクリックして制御することができます。
特定のスライス高さを更新すると、周囲のスライスの厚さも調整される可能性があります。
新規スライスを追加
スライスは以下のように追加します。
- スライスに特定のZ値を入力して適用を選択
- 特定の場所で高さバーをダブルクリック
スライスを削除
スライス高さを削除するには、リストから選択して削除ボタンをクリックします。スライス高さを削除すると、周囲のスライスが単一スライスにマージされます。
3Dビュー
スライスツールの利用時には、3Dビューはスライスの結果を視覚的に表示します。スライス高さが選択されると、以下のようになります。
- 赤色は、当該スライスに含まれている領域です。
- 緑色は、コンポーネントがスライス高さより上にある領域です(当該領域は平坦にスライスされます)。
- スライスは赤色と緑色の領域間に発生します。
3Dビュー内でスライスを操作することもできます。
- モデルをダブルクリックすると、アクティブなスライス高さ値がクリックされた高さと同じ値に変更されます。
- Shift + ダブルクリッククリックされた高さに新規のスライス高さを挿入します。
- Shift + マウスホイール (前後) アクティブなスライス高さを少しずつ増減します。これにより、薄いスライスを除去するために厚さを微調整することができます。
ビットマップをトレース
このツールは、ベクトルをイメージファイルに自動的にトレースまたはフィットして加工できるようにします。[ビットマップをインポート]ツールを使用して2Dビューでイメージを選択し、[ビットマップにベクトルをフィット]を開きます。
イメージのインポート後にトレースオプションを使用して、イメージの色付きまたは白黒領域の周囲にベクトル境界を自動的に作成します。
Watch this video to see this in action: https://youtu.be/dv9m9WaQkkY
ビットマップの選択領域をトレース
ビットマップの一部のみをトレースするために、ビットマップ内の領域を定義することができます。ビットマップを選択し、対象領域でマウスをクリックアンドドラッグしてビットマップ上に長方形領域を定義します。当該領域が黒い点線でハイライト表示されます。
ビットマップを再クリックすると選択領域が削除され、ビットマップ全体にベクトルがフィットされるようになります。
白黒イメージをトレース
白黒イメージではスライダーを利用して、しきい値の変更と白(最小)黒(最大)間の灰色レベルのマージが可能です。
2Dビューに表示されたイメージに問題がない場合は、ボタンをクリックし、選択したトレース色またはグレースケールでベクトル境界を自動的に作成します。
色イメージをトレース
カラー画像は自動的に 16 色に減色され、スライダーを使用して必要に応じて表示される色の数を設定できます。色は最も近いものと結合されます。
表示されている各色の横にあるチェック ボックスをクリックすると、色を一時的にリンクできます。これにより、2D ビューに表示される色が選択したトレース カラーに変わります。これは、類似した色を結合して完全な領域をトレースできるようにする場合に非常に便利です。
新しいトレース カラーが選択されている場合、リンクされたカラーは 2D ビューでこのカラーを使用して表示されます。
[リセット] ボタンを押すと、チェックしたすべての ✓ カラーのリンクが解除され、2D ビューに表示される画像が元の 16 色の画像に戻ります。
2Dビュー
2D ビューの画像から直接色を選択できます。
ビットマップの選択領域をトレース
ビットマップの一部のみをトレースするために、ビットマップ内の領域を定義することができます。ビットマップを選択し、対象領域でマウスをクリックアンドドラッグしてビットマップ上に長方形領域を定義します。当該領域が黒い点線でハイライト表示されます。
ビットマップを再クリックすると選択領域が削除され、ビットマップ全体にベクトルがフィットされるようになります。
フィットオプション
ベクトルが選択した色境界にフィット、または境界をたどる際の近接度を制御します。これは、結果を改良するために修正可能です。
角のフィット
角のフィットは、ベクトルがイメージの角にフィットされる精度を指定します。
はじめに
どのプロジェクトでも最初の段階は、新しい空白のパーツを作成するか、既存のデータをインポートして作業することです。この段階では、部品のサイズと、CNC 機械上のデータム位置に対するその位置に関連する多くのパラメータを定義する必要があります。後でパーツを定義して作業を開始すると、材料のサイズを変更したり、追加データをインポートしたり、プロジェクト操作を全般的に管理したりすることができます。マニュアルのこのセクションでは、パーツの最初の作成と、[図面] タブの ファイル操作 セクションに表示されるすべてのアイコンについて説明します。
プログラムを初めて起動すると、左側のタブに [スタートアップ タスク] オプションが表示され、最近開いた 4 つの Aspire パーツのリストも表示されます (これは、ソフトウェアを実行するたびに入力されるローリング リストです)最初は空である可能性があります)。
スタートアップタスクと最近使用したファイル
プログラムを初めて起動すると、左側のタブに [スタートアップ タスク] オプションが表示され、最近開いた Aspire パーツのリストも表示されます。
[スタートアップ タスク] セクションには、新しいファイルを作成する、テンプレートから新しいファイルを作成する、または既存のファイルを開くオプションがあります。
新しいファイルを作成すると、空白の作業領域のサイズと場所を指定したり、マテリアルの厚さを設定したり、モデルの品質やシェーディングの色/マテリアルさえも設定できます。これを行うプロセスについては、次のセクション (ジョブ セットアップ フォーム オプション) で説明します。
[テンプレートからの新しいファイル] を使用すると、コンピューターから事前に作成されたテンプレート ファイルを使用してプロジェクトを開始できます。 CRVT3D または CRVT テンプレート ファイルには、マテリアル サイズなどの必要な情報がすでに埋め込まれています。このテンプレート ファイル用に作成されたベクターとツールパスも含まれる場合があります。テンプレートファイルは、定期的に使用する設定に合わせて作成されるため、毎回作成する必要はありません。
[既存のファイルを開く] を選択すると、コンピューターから事前に作成されたファイルを開くことができます。これは、以前に作成したファイル (*.crv3d または .crv)。あるいは、別の CAD システム (.dxf、*.eps、*.ai および *.pdf) である可能性があります。 CRV3D または CRV ファイルには、マテリアル サイズなどの必要な情報がすでに埋め込まれています。 2D フォーマットでは、作成されたサイズと位置でデータがインポートされますが、パーツのすべてのパラメータを確認/編集するにはジョブ セットアップ フォームを使用する必要があります。
ビデオチュートリアル
チュートリアルビデオブラウザは、デフォルトのウェブブラウザを開きます(一般的には使用中のWindowsの設定と個人的なプリファレンスによって、Internet Explorer、Chrome、Firefoxのいずれか)。ウェブブラウザではプロジェクトまたは機能カテゴリ別に、ソフトウェアを学習するための複数のチュートリアルビデオと関連するファイルを提供します。ビデオの閲覧とファイルのダウンロードにはインターネットアクセスが必要ですが、ダウンロード済みのマテリアルはオフラインで使用することができます。
オンラインリソース
このセクションには、便利なウェブサイトやウェブリソースへのリンクが表示されます。これには、デザインに利用可能なクリップアートやプロジェクトの購入先とダウンロード先が含まれます。これらのリンクはデフォルトのウェブブラウザで開くため、インターネットアクセスが必要です。
ソーシャルメディア
このセクションには、Vectric ソーシャル メディア アカウントへの直接リンクが含まれています。ここでは、ソフトウェア、無料プロジェクト、ヒントとコツ、イベントに関する最新ニュースを見つけることができます。これらのリンクはデフォルトの Web ブラウザでも開くため、使用するにはインターネット アクセスが必要です。
クリップアートとプロジェクト
このセクションには、追加のクリップアートを購入およびダウンロードできる Design and Make Web サイトへの直接リンクが含まれています。このリンクはデフォルトの Web ブラウザでも開きます。使用するにはインターネット アクセスが必要です。
インタラクティブにベクトルをトリム
インタラクティブなトリミング ツールを使用すると、ユーザーは削除したいベクトルのセクションをクリックするだけで済みます。
プログラムは、ベクトルのクリックされた部分の両側で最も近い交差点を見つけ、交差点間のベクトルの部分を削除します。オプションで、このコマンドのフォームを閉じると、プログラムは残りのトリミングされた部分をすべて自動的に再結合できます。
このツールを使用しない場合、ベクトルの重複セクションを削除するには、両方のベクトルに余分なノードを挿入し、中間セクションを手動で削除して、結果の部分を手動で結合する必要があります。このツールを使用すると、これらの操作をワンクリックで実行できます。
ツールを選択すると、カーソルが「閉じた」ハサミの形に変わります。カーソルをトリミングに適したベクトル上に移動すると、ハサミが「開いて」クリックしてトリミングできることが表示されます。
トリムするベクトルが多数ある場合は、マウスの左クリック ボタンを押したままにし、カーソルをドラッグしてベクトルの上に置くと、ベクトルもトリムされます。これは、スパンを個別にクリックするよりもはるかに高速です。
注記
グループをトリミングしようとすると、グループがピンク色に点滅します。これは、最初にグループ化を解除する必要がない限り、トリミングできないことを示します。
トリム済みセクションを再結合
プログラムは、フォームが閉じている場合にトリム済みのベクトルの再結合を自動的に試行します。上図の重なり合うリングのようなシンプルなケースでは、このオプションを選択(✓)したままにします。多くのトリム済みの線が同一ポイントで交差するような場合は、このオプションを選択解除し、手動でベクトルを再結合します。
ジョブセットアップ:片面
[ジョブ セットアップ] フォームは、新しいジョブが作成されるとき、または既存のジョブのサイズと位置が編集されるときに表示されます。
サイズフォームに制限がある場合があります
ほとんどの場合、新しいジョブは、ジョブが機械加工される材料のサイズ、または少なくとも切断される部品を含む大きな材料片の領域を表します。 [OK] をクリックすると、新しい空のジョブが作成され、2D ビューに灰色の四角形として描画されます。 2D 設計ウィンドウに灰色の水平および垂直の点線が描画され、X0 点と Y0 点の位置が示されます。
職種
片面 ジョブ タイプは、設計で材料を片側から切断することのみが必要な場合に使用します。これは、設計と加工が最も簡単なジョブ タイプです。
両面 ジョブ タイプは、材料の 両側 をカットする必要がある場合に便利です。Aspire を使用すると、単一のプロジェクト ファイル内でデザインの両面の作成とカットのプロセスを視覚化して管理できます。
ロータリー ジョブ タイプでは、 回転軸 (第 4 軸またはインデクサーとも呼ばれます) の使用が可能になります。Aspire は、回転設計に適した代替の視覚化、シミュレーション、およびツールを提供します。
ジョブサイズ
フォームのこのセクションでは、プロジェクトで使用するマテリアル ブロックの寸法を、幅 (X 軸)、高さ (Y 軸)、厚さ (Z 軸) の観点から定義します。
また、デザインに使用する測定単位としてインチ (ヤードポンド法/英国法) またはミリメートル (メートル法) を選択することもできます。
XY基準位置
この基準点は、ジョブの任意のコーナーまたは中央に設定できます。これは、X0、Y0 に配置されたときに工作機械と一致する、設計に対する相対的な位置を表します。このフォームが開いている間、基準点の位置を強調するために、2D ビューに赤い四角形が描画されます。
オフセットを使用する
このオプションを使用すると、基準位置を X0、Y0 以外の値に設定できます。
デザインのスケーリング
既存のジョブのジョブ サイズ パラメータを編集する場合、このオプションは、既に作成した図面を新しいジョブの寸法に合わせて 比例して 拡大縮小するかどうかを決定します。ジョブ サイズが変更された後でも図面の既存のサイズを維持する場合は、このオプションをオフにしておきます。このオプションをオンにすると、 をクリックしたときに、新しいマテリアルの範囲内で同じ比率と相対位置を維持するように図面のサイズが変更されます。
モデリング解像度
3D モデルの解像度/品質を設定します。3D モデルを操作する場合、特定の操作には大量の計算とメモリが必要になることがあります。解像度を設定すると、作業している部分の品質と速度の最適なバランスを選択できます。選択した解像度品質が高いほど、コンピューターのパフォーマンスは遅くなります。
これは、作業している特定のパーツとコンピューターのハードウェア パフォーマンスに完全に依存するため、このドキュメントのような形式で設定を推奨することは困難です。一般的に、Aspire ユーザーが作成するパーツの大部分は、標準 (最速) 設定で問題ありません。作成するパーツが比較的大きい (18 インチ以上) が、細部が細かい場合は、高解像度 (3 倍遅い) などの高い解像度を選択することをお勧めします。また、非常に大きいパーツ (48 インチ以上) で細部が細かい場合は、最高 (7 倍遅い) 設定が適切です。
パーツの詳細を考慮する必要がある理由は、1 つの大きなアイテム (例: 魚) を含むパーツを作成する場合は標準解像度で問題ありませんが、多数の詳細なアイテム (例: 魚の群れ) を含むパーツの場合は、高または最高設定の方が適しているからです。前述のように、これらは非常に一般的なガイドラインであり、低速または古いコンピューターでは最高設定での操作は計算に長い時間がかかる場合があります。
解像度は作業領域全体に適用されるため、彫刻する予定のパーツがちょうど収まる大きさにパーツのサイズを設定することが重要です。 切断する予定のパーツが 12 x 12 しかない場合に、素材をマシンのサイズ (例: 96 x 48) に設定することはお勧めできません。そうすると、12 x 12 領域の解像度が非常に低くなります。
外観
をクリックすると、ベース 3D モデルに適用される色またはマテリアル効果を設定できるダイアログがポップアップ表示されます。これはいつでも変更でき、コンポーネント マネージャーを使用してさまざまなコンポーネントに異なる色とマテリアルを適用することもできます。さまざまなマテリアル設定とカスタム マテリアル効果の追加の詳細については、 工具経路をプレビュー を参照してください。
Rotary プロジェクトへの外部モデルのインポート
フル 3D モデルのインポート
このセクションでは、テーブルの脚を例として、フル 3D STL モデルをロータリー プロジェクトにインポートするプロセスを説明します。
概要
外部モデルをロータリー ジョブにインポートする場合は、2 つの基本的な使用例があります。最初のケースでは、この特定のジョブ用に設計されたモデルを別のソフトウェアに取り込むことが含まれます。したがって、インポートされた作品の寸法はすでに正しい場合があり、それをプロジェクトのサイズに使用することが望ましい場合があります。 2 番目の使用例は、特定のマシンに合わせてスケールする必要があるストック モデルをインポートする場合です。
Aspire は、これらの両方のケースをカバーする次のワークフローを使用します。
- ロータリープロジェクトのセットアップ
- インポートするファイルの選択
- マテリアルブロック内のモデルの方向を設定する
- モデルのスケーリング
- インポートを終了する
ロータリープロジェクトのセットアップ
ジョブ設定フォームを使用して新しいジョブを作成します。次のステップで適切なインポート ツールが使用されるように、ジョブ タイプをロータリーとして設定することが重要です。
プロジェクトの寸法がすでにわかっている場合は、それらを直接指定できます。
モデルを特定のマシンまたは利用可能なストックに適合させたい場合は、直径と長さの両方を 最大に設定します。インポート中に、モデルはこれらの制限に合わせてスケーリングされます。
インポートしたモデルのサイズを使用したい場合は、この時点で どれでも サイズを指定できます。モデルのインポート中に、モデルの寸法に合わせてプロジェクトのサイズを自動的に変更できます。
この例では、直径 4 インチ、長さ 12 インチの特定のストック サイズにモデルを適合させることが必要でした。 XY原点を中心に設定しました。
ファイルのインポートと向きの調整
インポート プロセスを開始するには、[モデリング] タブの コンポーネントまたは 3D モデルをインポートするツールを使用します。
[インポートされたモデル タイプ] が [フル 3D モデル] に設定されていることを確認します。
最初のステップは、インポートしたモデルをマテリアル内に配置することです。この情報はインポートされたファイルには存在しないため、この手順が必要です。モデルが開かれると、インポート ツールは以下に示すように初期方向を選択します。
モデルの方向を決定しやすくするために、ソフトウェアでは青い境界円柱が表示されます。この円柱の回転軸は材料ブロックに定義された回転軸と一致しているため、基準として使用できます。そのサイズは、インポートされたモデルを現在の向きで含めるのに十分な大きさです。モデルの方向が変更されると、この青い円柱は縮小または拡大するため、常にモデルが含まれます。この段階では、モデルを正しく配置することだけに関心があるため、正確な寸法は重要ではありません。
また、ソフトウェアは回転軸を赤色で強調表示します。これは、曲げモデルをインポートする場合に特に重要です。現在、回転軸の完全に下または上にあるモデルの領域を表現することはできません。ここに示す例がこれに当てはまります。モデルをそのままインポートすると、以下のような歪みが生じてしまいます。したがって、回転軸がモデル内に含まれるようにモデルを配置することが重要です。
ソフトウェアによって表示される最後のガイド要素は、シリンダーの側面にある赤い半矢印です。この矢印は、2D ビューでラップされた寸法の中心に対応する位置を示しています。この例では、脚の前部が 2D ビューの中心ではなく側面に配置されるようにモデルの向きが設定されています。したがって、この矢印がインポートされたモデルの前面を指すようにモデルを回転することをお勧めします。
インポート ツールには、モデルの方向を調整するいくつかの方法が用意されています。最も基本的なものは初期方向です。これを使用して、モデルを回転軸に大まかに位置合わせできます。これは、Z 軸を中心とした回転と組み合わせることもできます。この例では、ツールは回転なしで左を選択しました。脚の前部を赤い矢印に合わせるには、Front と -90 を Z 軸を中心とした回転として使用できます。
最初の方向が決定したら、インタラクティブ回転を使用してさらに調整を行うことができます。デフォルトのオプション - XYZ ビュー - は対話型回転を無効にします。つまり、マウスを使用して 3D ビューを いじった できるということです。他のオプションを選択すると、指定した軸を中心とした回転が有効になります。
この例では、脚の前部を赤い矢印に揃えるために初期方向を変更する代わりに、X モデル オプションを選択してピースを手動で回転できます。単一軸の回転を選択すると、その軸が画面の方向を向いているように 3D ビューが調整されます。間違いがあった場合は、 Ctrl + Zを使用して回転を元に戻すことができます。
パーツが回転されるたびに、パーツは常に円柱の中心に配置されることに注意してください。この例では、回転軸をモデル内に含める必要があるため、これは望ましくありません。回転軸に対してモデルを移動するには、 回転軸の移動を使用できます。
前述のツールと同様に、回転軸の移動がオフに設定されている場合、3D ビューをパンすることができます
インポートするモデルを正しく配置するには、曲がるモデルで望ましい結果を得るために、回転軸の移動とインタラクティブな回転の組み合わせが必要になる場合があります。歪みを避けるために、回転軸が非表示になっていることを確認することが重要です。ただし、機械加工中に工具の角度が最適に近い角度になるように、回転軸を部品の各セグメントの中心に置くことも望ましいです。通常、調整後にビュー内のモデルを軸を中心に回転すると便利です。これにより、表示角度を変更する前にインタラクティブ回転を無効にする必要がなく、モデルを両側から検査できるようになります。
Aspire が行うことを理解することが重要です。 ない 4軸加工をサポート。つまり、加工された部品を回転させ、工具を回転軸に沿って Z 方向に移動させることはできますが、ラップされた寸法内で工具を移動させることはできないため、工具は常に回転軸の上にあり、回転軸に移動することはできません。サイド。
この制限を以下に示します。最初の写真は、ポイントの正しい加工を示しています。ただし、工具が別の場所に移動すると、角度が正しくなくなり、さらに悪いことに、工具側がストックに接触してしまいます。
インポートされたモデルのスケーリング
モデルを希望どおりに配置したら、そのサイズを考慮に入れることができます。
デフォルトでは、ツールはインポートされたモデルがプロジェクトと同じ単位を使用していると想定します。そうでない場合は、モデル単位を切り替えることができます。この例では、プロジェクトはインチで設定され、インポートされたモデルは mm で設計されました。切り替え後、モデルは大幅に小さくなり、以下に示すように、現在のマテリアル ブロックを表す赤い円柱が表示されます。
この時点で、直径と長さの観点からモデルのサイズを指定することができます。これは、希望の寸法を入力するか、材料に合わせることで手動で行うことができます。 [ロック比率] オプションが選択されている場合、直径と長さの比率が維持されます。マテリアルブロックのサイズ変更オプションにチェックを入れることもできます。これが選択されている場合、マテリアル ブロックはモデルの現在のサイズに合わせて拡大縮小され、 後 OK をクリックします。
モデル サイズをマテリアル ブロック サイズとして使用したい場合は、単位が正しいことを確認してから、マテリアル ブロックのサイズ変更オプションにチェックを入れて OK を押します。
モデルをマテリアルに合わせたい場合は、「マテリアルに合わせてモデルをスケール」をクリックし、「マテリアル ブロックのサイズを変更」にチェックを入れます。
この例では、モデルがマテリアルに適合されました。この場合、ピースの長さが制限要因となり、ロック率が維持されるため、モデルの直径は素材ブロックよりも大幅に小さくなります。したがって、マテリアルブロックのサイズを変更するオプションにチェックが入っていました。
インポートを終了しています
[OK]を押すと、モデルがコンポーネントとしてインポートされます。必要に応じて、他のコンポーネントとして変更したり、表面に装飾的なクリップアートを追加したりすることが可能です。
ラッピングプロセスによって生じる歪みに留意することが重要です。つまり、ラップされたツールパスはブランクの表面でのみ平らなツールパスと一致します。ツールパスが回転軸に近づくほど (つまり深くなるほど)、ツールパスはさらに「圧縮」されます。この事実は 3D ツールパスに重大な意味を持ちます。以下に示す例を考えてみましょう。
モデルのさまざまな部分で直径に大きな違いがある場合にわかるように、モデル全体に対して 1 つの 3D ツールパスを生成すると、ラップされたツールパスが過度に圧縮されます。したがって、通常は、直径が大きく異なる領域の境界を作成し、直径ごとに正しい設定を使用して個別のツールパスを生成する方が良いでしょう。
フラットモデルのインポート
このセクションでは、フラット STL モデルをロータリー プロジェクトにインポートするプロセスを説明します。フラット モデルは、Aspire で提供される装飾的なクリップアートに似ており、モデル化された形状の表面に配置されることを想定しています。
インポート プロセスを開始するには、[モデリング] タブの コンポーネントまたは 3D モデルをインポートするツールを使用します。
インポートされたモデルのタイプがフラット モデルに設定されていることを確認してください
繰り返しますが、最初のステップは、モデルの適切な方向を選択することです。ツールは初期方向を選択し、赤いマテリアル ボックスにモデルを表示します。このボックスは「包まれていない」材料ブロックに対応し、その厚さはブランクの指定された直径の半分に等しくなります。
モデルの向きが正しくない場合、つまり、上に見られるように、マテリアル ボックスの底に平らに置かれていない場合は、向きを調整する必要があります。これを行うには、[初期方向] オプションや Z 軸を中心とした回転を変更できます。
インポートされたモデルがどの軸とも位置合わせされていない場合は、インタラクティブな回転を使用する必要がある場合があります。デフォルトのオプションである XYZ ビューでは、インタラクティブな回転が無効になります。つまり、マウスを使用して 3D ビューを いじった できるということです。他のオプションを選択すると、指定した軸を中心とした回転が可能になります。
Ctrl + Zを押すと、各回転を元に戻すことができます。
モデルの向きが適切になると、単位変換を実行できるようになります。デフォルトでは、ツールはインポートされたモデルがプロジェクトと同じ単位を使用していると想定します。そうでない場合は、モデル単位を切り替えることができます。
モデルのスケーリング オプションも含まれています。 [比率をロック] オプションを選択すると、X、Y、Z の長さの比率が維持されます。モデルがインポートされると、コンポーネントとしてプロジェクトに追加されることに注意してください。したがって、モデルをインポートした後、正しい配置、回転、サイズ変更を実行できます。
プロジェクトにまだモデルが含まれていない場合は、次のメッセージが表示されます。
通常は、単に「はい」をクリックするだけで済みます。モデリング平面の調整に関する詳細な説明は、 3D 回転プロジェクトのモデリングに記載されています。
クラッシュハンドリング
不幸にもソフトウェアがクラッシュしてしまうと、
- データが失われないように、未保存の変更を保存しようとします。
- 修正に取り組むことができるように、クラッシュを報告する簡単な方法を提供してください。
プロジェクトの保存
ジョブの作業中にソフトウェアがクラッシュした場合、ソフトウェアは最初にプロジェクトを保存しようとします。元のファイルが誤って破損することを避けるために、プロジェクトは元のファイルと一緒に保存されます。
クラッシュを報告する
問題の追跡に役立つクラッシュ情報をアップロードするように求めるダイアログが表示されます。問題をタイムリーに解決するために役立つ情報をお知らせください。
説明
当時あなたが何をしていたかを思い出して、それを説明してください。思いつく限りの情報をご記入ください。少しでも情報をいただければ、問題をより迅速に追跡するのに役立ちますので、大変感謝いたします。
情報
さらに詳しい情報が必要な場合に備えて、お名前と電子メールアドレスをご記入いただければ、折り返しご質問させていただきます。たとえば、あなたが取り組んでいたプロジェクトが必要になる場合があります。このデータは、問題の追跡を支援する以外の どれでも 目的には使用されません。
インターネット
これを機能させるには、インターネットに接続する必要があります。そうでない場合でも、生成された zip 形式のレポートを support@vectric.comに送信できます。レポートは、アプリケーション プログラム データ (メニュー ファイル ⇛ アプリケーションデータフォルダーを開く...からアクセス可能) にあります。レポートを送信しようとして失敗した場合は、そのパスの場所を示すメッセージが表示されます。そのレポートを私たちに受け取る方法。
クラッシュレポートは、分析に役立つツールを提供する バグスプラット (サードパーティ) 会社によって提供されています。
画像編集
画像編集フォームを使用して、枠の追加や選択したビットマップのプロパティを編集することができます。
コントラスト
このスライダーでコントラストを調整します。
コントラストを高くすると、画像の明るい部分と暗い部分の違いが強調されます。
コントラストを低くすると、その差が減り、画像がよりニュートラルで平均的なものになります。
ジョブセットアップ:回転
ジョブセットアップフォームは、新規ジョブの作成時または既存ジョブのサイズと位置の変更時に表示されます。
多くの場合で、新規ジョブはジョブが加工する素材サイズ、または加工を行うパーツを含む素材の大型ピースの領域を表します。OKをクリックすると、2Dビューに灰色の長方形として表示される空の新規のジョブを作成します。2Dデザインウィンドウに表示される灰色の水平および垂直の破線は、X0とY0座標が配置される位置を表します。
XY基準位置
この基準点は、ジョブの任意のコーナーまたは中央に設定できます。これは、X0、Y0 に配置されたときに工作機械と一致する、設計に対する相対的な位置を表します。このフォームが開いている間、基準点の位置を強調するために、2D ビューに赤い四角形が描画されます。
オフセットを使用する
このオプションを使用すると、基準位置を X0、Y0 以外の値に設定できます。
方向
このオプションは、マテリアル ブロックがどの軸に沿って回転するかを選択します。
- 「X 軸に沿って」を選択すると、X 座標は円柱に沿った動きを表し、Y 座標は円柱の周りの角度を表します。
- 「Y 軸に沿って」を選択すると、Y 座標は円柱に沿った動きを表し、X 座標は円柱の周りの角度を表します。
デザイン反転
選択時には方向変更時にデザインが反転されます。
デザインのスケーリング
既存のジョブのジョブ サイズ パラメータを編集する場合、このオプションは、既に作成した図面を新しいジョブの寸法に合わせて 比例して 拡大縮小するかどうかを決定します。ジョブ サイズが変更された後でも図面の既存のサイズを維持する場合は、このオプションをオフにしておきます。このオプションをオンにすると、 をクリックしたときに、新しいマテリアルの範囲内で同じ比率と相対位置を維持するように図面のサイズが変更されます。
モデリング解像度
3D モデルの解像度/品質を設定します。3D モデルを操作する場合、特定の操作には大量の計算とメモリが必要になることがあります。解像度を設定すると、作業している部分の品質と速度の最適なバランスを選択できます。選択した解像度品質が高いほど、コンピューターのパフォーマンスは遅くなります。
これは、作業している特定のパーツとコンピューターのハードウェア パフォーマンスに完全に依存するため、このドキュメントのような形式で設定を推奨することは困難です。一般的に、Aspire ユーザーが作成するパーツの大部分は、標準 (最速) 設定で問題ありません。作成するパーツが比較的大きい (18 インチ以上) が、細部が細かい場合は、高解像度 (3 倍遅い) などの高い解像度を選択することをお勧めします。また、非常に大きいパーツ (48 インチ以上) で細部が細かい場合は、最高 (7 倍遅い) 設定が適切です。
パーツの詳細を考慮する必要がある理由は、1 つの大きなアイテム (例: 魚) を含むパーツを作成する場合は標準解像度で問題ありませんが、多数の詳細なアイテム (例: 魚の群れ) を含むパーツの場合は、高または最高設定の方が適しているからです。前述のように、これらは非常に一般的なガイドラインであり、低速または古いコンピューターでは最高設定での操作は計算に長い時間がかかる場合があります。
解像度は作業領域全体に適用されるため、彫刻する予定のパーツがちょうど収まる大きさにパーツのサイズを設定することが重要です。 切断する予定のパーツが 12 x 12 しかない場合に、素材をマシンのサイズ (例: 96 x 48) に設定することはお勧めできません。そうすると、12 x 12 領域の解像度が非常に低くなります。
外観
をクリックすると、ベース 3D モデルに適用される色またはマテリアル効果を設定できるダイアログがポップアップ表示されます。これはいつでも変更でき、コンポーネント マネージャーを使用してさまざまなコンポーネントに異なる色とマテリアルを適用することもできます。さまざまなマテリアル設定とカスタム マテリアル効果の追加の詳細については、 工具経路をプレビュー を参照してください。
星作成
カーソルとクイックキーを使用、または正確な座標と直径/半径を入力して、インタラクティブに星を作成することができます。
Watch this video to see this in action: https://youtu.be/UZeMhbWFfjQ
インタラクティブに作成
2Dビューでマウスをクリックして、迅速かつ容易に星を作成することができます。
- 左マウスボタンを押下して中心点を指定します。
- マウスボタンを押しながら必要な半径までドラッグします。
- 左マウスボタンを放して形状を作成します。
注記
Altキーを押しながらドラッグすると、中点から星を作成します。
画面上でカーソルをドラッグすると、外側半径が動的に更新されます。スナップ半径とジョブのサイズに基づいて増分値が変化します。
クイックキー
形状を必要とするサイズまでドラッグする際に、左マウスボタンを放す代わりにドラッグ中に値を入力し、プロパティを正確に設定することができます。
- 2Dビューで形状をクリックアンドドラッグします。
- 左マウスボタンを押下したまま、以下のキーシーケンスを入力します。
- 左マウスボタンを放します。
デフォルト
デフォルトで単一値を入力すると、星の外側半径が設定されます。星をドラッグ中に半径 値 入力キーを使用すると、指定された外側半径で星が正確に作成されます。
例
- 2 。 6 入力 :外側半径2.5、その他の設定はフォーム通りに星を作成します。
さらにプロパティを指定
値の後に特定の文字キーを使用して、関連するプロパティを正確に指定することができます。
注記
クイックキーを使用して複数のプロパティを指定する場合でも、下表に示された順で入力する必要があります。
- 値 D:指定された外側直径(D)、その他の設定はフォーム通りに星を作成します。
- 値 私 値 R:内側半径パーセント(I)と外側半径(R)で星を作成します。内側半径は、外側半径または直径の割合で定義されます。その他の全プロパティはフォーム通りになります。
- 値 P 値 R :指定数のポイント(P)と外側半径(R)で星を作成します。
- 値 P 値 私 :指定数のポイント(P)、内側半径パーセント(I)、外側半径(R)で星を作成します。
例
- 1 R では、外側半径1、その他のプロパティはフォーム通り
- 1 D では、外側直径1、その他のプロパティはフォーム通り
- 6 P 1 R では、外側半径1の6ポイントの星
- 6 P 2 6 私 4 D では、外側直径(D)4、外側直径の25%の内側直径(すなわち1)、6ポイント(P)の星
どちらのビューでも使用可能
このツールは 2D ビューと 3D ビューの両方で使用できます。
2D ビューでは、ベクターをより直接的に表示できますが、3D ビューでは、3D デザインでベクターを操作したり、編集ボックスを活用したりするための柔軟性が高まります。
ヘルプ
ヘルプコンテンツ | ソフトウェアで利用可能なすべての機能とオプションを文書化した完全なリファレンス マニュアルのオンライン バージョンを表示します。 注記 レファレンスマニュアルは、ユーザーガイドまたは基本のトレーニングリソースを意図したものではありません。インストールメディアの[はじめに]ガイドと[チュートリアルライブラリ]を参照してください。 |
キーボードショートカット | ショートカットキーを表示します |
ビデオ チュートリアル ブラウザ... | チュートリアルにアクセスする |
新着情報 | メジャー アップデートとマイナー アップデートで追加された新機能の概要をご覧ください。 |
リリースノート | パッチ更新で修正された問題と機能強化のリストをご覧ください。 |
サードパーティライセンス | Aspireの作成に使用されたすべてのサードパーティ ソフトウェアのリストを表示します。 |
ライセンスコードを入力してください | ライセンスダイアログやモジュール詳細を入力するためのライセンスダイアログを表示します。 |
Vectric オンライン FAQ を表示... | よくある質問 (FAQ) を表示します |
Vectric ユーザー フォーラムを表示... | インターネットに接続されている場合、Vectricユーザーフォーラムをウェブブラウザに開きます。その他のユーザーと交流して助言やヒントを得るために、フォーラムへのご参加を推奨します。 |
オンラインで Vectric サポートにアクセスしてください... | インターネットに接続されている場合、Vectricサポートウェブサイトをウェブブラウザに開きます。 |
Vectric ユーザー ポータルにアクセスしてください... | インターネットに接続されている場合、Vectricユーザーポータルをウェブブラウザに開きます。ソフトウェアインストールファイル、アクティベーションコード、ソフトウェアに含まれるクリップアートをダウンロードします。 |
ポストプロセッサー編集ガイド | 使用中のポストプロセッサの作成と編集方法を説明したページを開きます。 |
古いバージョンからの移行 | Aspire の最後のバージョンの設定を最新バージョンにコピーできるようにするダイアログを開きます。 |
アップデートを確認 | これを定期的に試して、ソフトウェアのアップデートが利用可能かどうかを (インターネット経由で) 確認してください。 |
キックスターターを実行する | ウィザードを開き、ユーザーが開始できるようにします。 |
製品情報...Aspire... | このウィンドウには、使用されているソフトウェアのバージョン、ソフトウェアのライセンス対象者、およびライセンスの種類が表示されます。 |
ポストプロセッサーコンテンツ
このウィンドウでは、選択したポストプロセッサ ファイルの内容を表示できます。
これは、「マシン構成管理」ダイアログから表示でき、「ポストプロセッサー管理」ダイアログを通じてカスタマイズできます。
表示するには、[マシン構成管理] ダイアログを開き、表示したいポストプロセッサをマウスの右ボタンでクリックし、右クリック メニューから [表示] を選択します。
注: 表示オプションは、My_PostP フォルダーに配置したカスタム ポスト プロセッサでは使用できません。
マシン構成ポストプロセッサ
[マシン構成管理] ダイアログでは、使用するポストプロセッサの固定バージョンを定義できます。そこからこのポストプロセッサを表示すると、最新バージョンの内容ではなく、選択したバージョンの内容が表示されます。 最新バージョンの内容を確認したい場合は、[ポストプロセッサ管理] ダイアログからポストプロセッサを表示する必要があります。
POST_NAME
このポストプロセッサの内容をコピーして使用したい場合は、ファイルの先頭に POST_NAME ステートメントを追加する必要があります。代わりに「カスタマイズ」オプションを選択すると、これは自動的に行われます。
コンテンツをテキスト形式で切り取って、コンピュータのクリップボードに貼り付けることができます。
カスタムポストプロセッサー
ポストプロセッサ管理 ダイアログ フォーム内で、ポスト プロセッサをカスタムとしてマークできます。これを行うには、「編集」アイコンをクリックします。
これにより、選択したポスト プロセッサが My_PostP フォルダに移動されます。任意のテキスト エディタを使用して、このポスト プロセッサを編集できます。
ライセンスダイアログ
ライセンスダイアログは、ソフトウェアをアクティブにする際に必要な情報を入力するために使用されます。このダイアログは、オプションのモジュールをアクティブにする際にも使用されます。最初に表示されるページには、ライセンスの詳細を設定するためのオプション(V&Coアカウントから自動入力/手動入力)が記載されます。
「オンラインメソッド」では、オンラインのプロセスを説明します。
「手動メソッド」では、インターネット接続が利用できない場合に、ライセンスの詳細を手動入力するプロセスを説明します。
オンラインメソッド
この方法では、V&Coアカウントから自動的に詳細を取得することができます。フォームで「オンライン」を選択し、をクリックします。フォームのオンラインセクションが表示されます。
ダイアログのをクリックすると、ウェブブラウザが起動し、認証が必要な場合はV&Coログインページが表示されます。
V&Coアカウントの詳細でログインが完了すると、Aspireによるライセンス詳細へのアクセスを承認するためのページが表示されます。
このページはアクセスが未承認の場合のみ表示されます。このページが表示されたら「許可」を選択し、Aspireによるライセンスの詳細の自動取得を有効にします。
この時点でAspireは表示中で、ダイアログにはアカウントで利用可能なライセンスの詳細が自動入力されているはずです。
利用可能な製品ライセンスを選択すると、ライセンスの種類に関する情報がステータスに表示されます。ライセンスとモジュールをクリックして選択すると、が有効になるので選択し、サマリーページに進みます。
注記
アカウントに利用可能なライセンスが1つしかない場合、上記のページはスキップされ、下記のサマリーページが表示されます。
このページには、選択したライセンスとモジュールの詳細が記載されます。現行ライセンスの詳細を変更、またはモジュールを追加する場合は、再起動が必要になります。この場合、再起動を自動的に行うためのチェックボックスが表示されます。これを選択すると、の選択時にAspireは自動的に再起動し、ライセンスの変更を適用します。このオプションが未選択の場合、ライセンスの変更は次回Aspireが再起動されるまで適用されません。
手動メソッド
手動メソッドでは、ライセンスの詳細をインターネットに接続せずに入力することができます。
ライセンスは以下の2つの方法で入力可能です。
- ファイルから読み込み
- テキストフィールドに直接入力または値をコピー
ファイルから読み込み
V&Coアカウントから、.vlicenceファイルのダウンロードを選択することができます。
このファイルの使用方法は以下のとおりです。
- ファイルをダブルクリックし、ソフトウェアで開きます。
- ライセンスダイアログのウィザードを使用して、クリックにより.vlicenceファイルを読み込みます。
複数のソフトウェアのインストール
旧バージョンのソフトウェアがインストールされている場合、正しいソフトウェアのインストールを使用して.vlicenceファイルを開いてください。
手動
ライセンスデータ
V&Co アカウントからライセンス データを取得し、 ライセンスデータの入力 オプションを使用して入力できます。
ライセンスデータの例
---VECTRIC ライセンスを開始します--- eyJ2ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789eyJ2ABCDEFGHIJKLMNOPQRSTUVWXYZ012345 6789eyJ2ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789eyJ 2ABCDEFGHIJKLMNOPQRSTUVWXYZ01 23456789eyJ2ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789eyJ2ABCDEFGHIJKLMNOPQRSTUVWX YZ0123456789eyJ2ABCDEFGHIJKLMNOPQRSTUVWX YZ0123456789eyJ2ABCDEFGHIJKLMNOPQRST UVWXYZ0123456789eyJ2ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789== ---ENDベクトリックライセンス---
登録ユーザー名とライセンスコード
登録されていないものの、最近購入したマシンで ユーザー名を登録する と ライセンスコード を受け取った場合は、 ユーザー名とライセンスコードを入力してください オプションを使用してそれらを入力できます。
登録ユーザー名とライセンスコードの例
登録ユーザー名 私のマシンテスト - 00100 ライセンスコード ABCDEF-GHIJKL-MNOPQR-STUVWX-YZ0123-456789-ABCDEF-GHIJKL-MNOPQR-STUVWX
ライセンスコードをコピーする
コード全体を最初のフィールドにコピーすると、残りのテキスト フィールドが自動的に入力されます。
製品がすでにライセンスされている場合は、この段階で製品コードの代わりにモジュール コードを入力できます。製品コードとモジュール コードの両方を手動でアクティブ化する場合は、製品コードをここに追加する必要があり、後でモジュール コードを追加する機会があります。
を押すとライセンスが設定され、概要画面が表示されます。
モジュールの追加
概要画面には、現在ライセンスを取得しているユーザーが表示され、モジュールを追加できる ボタンがあります。このボタンを押すと手動入力フォームが再度表示され、モジュールの詳細を入力できるようになります。
ライセンスを取得したユーザーが変更された場合、または新しいモジュールが追加された場合、それらを完全に有効にするために再起動が必要になります。この場合、チェックボックスが表示され、自動的に再起動できるようになります。これをチェックすると、終了ボタンを押すとプログラムが自動的に再起動され、ライセンスの変更が適用されます。このオプションを選択しない場合、ライセンスの変更は次回プログラムを再起動したときに有効になります。
ビットマップからコンポーネント作成
このツールを使用して、ビットマップから3Dコンポーネントを自動的に作成することができます。
2Dビューでビットマップが未選択の場合、ファイルダイアログが開きます。これにより、コンピューターのドライブからイメージを選択することができます。このコンポーネントの作成方法では、インポート時にカラーシェーディングの数を削減する可能性のあるイメージの変換を回避することができます。そのため、ASPIREでビットマップファイルからコンポーネントに変換する方法が最良になります。
ビットマップからのコンポーネントは、ソフトウェアによって自動的にスケーリングされ、その他のコンポーネントに追加するために設定されます。そのため、通常ではコンポーネントプロパティアイコンを使用した高さの調整や、結合モードと変換ツールを使用したサイズと位置の調整などの編集が必要になります。
ビットマップを選択せずに変換
2Dビューでビットマップが未選択の場合、ファイルダイアログが開きます。これにより、コンピューターのドライブからイメージを選択することができます。このコンポーネントの作成方法では、インポート時にカラーシェーディングの数を削減する可能性のあるイメージの変換を回避することができます。そのため、ASPIREでビットマップファイルからコンポーネントに変換する方法が最良になります。これは特に16ビットのイメージで重要です。
ジョブセットアップ:両面
ジョブセットアップフォームは、新規ジョブの作成時または既存ジョブのサイズと位置の変更時に表示されます。
多くの場合で、新規ジョブはジョブが加工する素材サイズ、または加工を行うパーツを含む素材の大型ピースの領域を表します。OKをクリックすると、2Dビューに灰色の長方形として表示される空の新規のジョブを作成します。2Dデザインウィンドウに表示される灰色の水平および垂直の破線は、X0とY0座標が配置される位置を表します。
職種
片面 ジョブ タイプは、設計で材料を片側から切断することのみが必要な場合に使用します。これは、設計と加工が最も簡単なジョブ タイプです。
両面 ジョブ タイプは、材料の 両側 をカットする必要がある場合に便利です。Aspire を使用すると、単一のプロジェクト ファイル内でデザインの両面の作成とカットのプロセスを視覚化して管理できます。
ロータリー ジョブ タイプでは、 回転軸 (第 4 軸またはインデクサーとも呼ばれます) の使用が可能になります。Aspire は、回転設計に適した代替の視覚化、シミュレーション、およびツールを提供します。
ジョブサイズ
フォームのこのセクションでは、プロジェクトで使用するマテリアル ブロックの寸法を、幅 (X 軸)、高さ (Y 軸)、厚さ (Z 軸) の観点から定義します。
また、デザインに使用する測定単位としてインチ (ヤードポンド法/英国法) またはミリメートル (メートル法) を選択することもできます。
Zゼロポジション
Z = 0.0の場合に、工具先端が(図のように)素材サーフェスとマシンのベッド/テーブルのどちらから開始されるかを示します。
両面をゼロにする
選択時には、素材の反転にかかわらずZゼロが同一の物理的位置を参照することができます。
XY基準位置
この基準点は、ジョブの任意のコーナーまたは中央に設定できます。これは、X0、Y0 に配置されたときに工作機械と一致する、設計に対する相対的な位置を表します。このフォームが開いている間、基準点の位置を強調するために、2D ビューに赤い四角形が描画されます。
オフセットを使用する
このオプションを使用すると、基準位置を X0、Y0 以外の値に設定できます。
デザインのスケーリング
既存のジョブのジョブ サイズ パラメータを編集する場合、このオプションは、既に作成した図面を新しいジョブの寸法に合わせて 比例して 拡大縮小するかどうかを決定します。ジョブ サイズが変更された後でも図面の既存のサイズを維持する場合は、このオプションをオフにしておきます。このオプションをオンにすると、 をクリックしたときに、新しいマテリアルの範囲内で同じ比率と相対位置を維持するように図面のサイズが変更されます。
モデリング解像度
3D モデルの解像度/品質を設定します。3D モデルを操作する場合、特定の操作には大量の計算とメモリが必要になることがあります。解像度を設定すると、作業している部分の品質と速度の最適なバランスを選択できます。選択した解像度品質が高いほど、コンピューターのパフォーマンスは遅くなります。
これは、作業している特定のパーツとコンピューターのハードウェア パフォーマンスに完全に依存するため、このドキュメントのような形式で設定を推奨することは困難です。一般的に、Aspire ユーザーが作成するパーツの大部分は、標準 (最速) 設定で問題ありません。作成するパーツが比較的大きい (18 インチ以上) が、細部が細かい場合は、高解像度 (3 倍遅い) などの高い解像度を選択することをお勧めします。また、非常に大きいパーツ (48 インチ以上) で細部が細かい場合は、最高 (7 倍遅い) 設定が適切です。
パーツの詳細を考慮する必要がある理由は、1 つの大きなアイテム (例: 魚) を含むパーツを作成する場合は標準解像度で問題ありませんが、多数の詳細なアイテム (例: 魚の群れ) を含むパーツの場合は、高または最高設定の方が適しているからです。前述のように、これらは非常に一般的なガイドラインであり、低速または古いコンピューターでは最高設定での操作は計算に長い時間がかかる場合があります。
解像度は作業領域全体に適用されるため、彫刻する予定のパーツがちょうど収まる大きさにパーツのサイズを設定することが重要です。 切断する予定のパーツが 12 x 12 しかない場合に、素材をマシンのサイズ (例: 96 x 48) に設定することはお勧めできません。そうすると、12 x 12 領域の解像度が非常に低くなります。
外観
をクリックすると、ベース 3D モデルに適用される色またはマテリアル効果を設定できるダイアログがポップアップ表示されます。これはいつでも変更でき、コンポーネント マネージャーを使用してさまざまなコンポーネントに異なる色とマテリアルを適用することもできます。さまざまなマテリアル設定とカスタム マテリアル効果の追加の詳細については、 工具経路をプレビュー を参照してください。
工具経路保存
このオプションを使用して、CNCマシンに対して適切なファイルフォーマットで工具経路を保存することができます。工具経路は、使用される各工具に対して個別のファイルとして保存可能です。または、自動工具交換機能のあるCNCマシンに対し、複数の工具経路を含む単一ファイルとして保存することもできます。
個別の工具経路
手動でツールを変更する必要がある CNC マシンでは、通常、使用するカッターごとに個別のツールパスが必要です。このタイプのツールパスを保存する手順は次のとおりです。
- ツールパスリストから保存するツールパスを選択します
- 「保存」オプションをクリックすると、「ツールパスの保存」フォームが表示されます。
- プルダウン リストから目的のマシンを選択します。
- プルダウン リストから、そのマシンに関連付けられているポストプロセッサの 1 つを選択します。
- 「ツールパスを保存」ボタンをクリックします。
- 適切な名前を入力し、 ボタンをクリックします。
ポストプロセッサの選択と関連付け
ドロップダウン リストからマシンを選択すると、ポストプロセッサ リストが更新され、選択したマシンに関連するもののみが表示されます。これが起こる前に、ポストプロセッサを特定のマシンに関連付ける必要があります。
ポストプロセッサは マシン構成ダイアログ を使用してマシンに関連付けることができます。これには、 をクリックしてアクセスできます。
[ポストプロセッサ] ドロップダウン リストから <Add Post-Processors> オプションを選択して、現在選択されているマシンにポストプロセッサをすばやく関連付けることもできます。
詳細については、 オンラインマシン構成 および 手動マシン構成を参照してください。
選択された工具経路
選択された工具経路のみを保存します。
可視工具経路を単一ファイル
すべての可視工具経路を単一ファイルに保存します。選択された工具経路が同一の工具を使用、または自動工具交換(後述)を利用する必要があります。
可視工具経路を複数ファイル
表示されているすべてのツールパスを個別のファイルに保存します。ファイル名の入力を求められます。このファイル名は、各ファイルのプレフィックスとして使用されます。
可能な限りグループ化する オプションが選択されている場合、同じツールを使用する連続したツールパスが同じファイルに保存されます。この場合、選択した名前と、どのツールパスが保存されているかを示す番号が適用されます。たとえば、ファイルに 工具経路 という名前を付け、最初の 3 つのツールパスをすべて 1 つのファイルに出力できる場合、そのファイルは ツールパス_1-3 で始まり、ツールパス 1 ~ 3 であることを示します。救われています。
自動工具交換のサポート
自動工具交換 (ATC) 機能を備えた CNC マシンは、それぞれに異なる工具番号を持つ複数のツールパスを含む 1 つのファイルを操作できます。
ポストプロセッサは、CNC マシンの ATC コマンドをサポートするように構成する必要があります。詳細については、ソフトウェアまたはマシンのサプライヤーにお問い合わせください。
- これらのツールパスを保存する手順は次のとおりです。
- 上矢印と下矢印を使用して、必要な切断シーケンスのツールパス リストを並べ替えます。
- 各ツールパスにチェックマークを付けて、次のように 3D ウィンドウに描画/表示されていることを確認します。
- 「保存」オプションをクリックすると、「ツールパスの保存」フォームが表示されます。表示されているすべてのツールパスを 1 つのファイルに出力するオプションを選択します
ファイルに書き込まれるツールパスの名前が、角括弧 [1] 内のツール番号とともに表示されます。計算されたツールパスが必要ない場合は、チェックマークを付けて描画を取り消します。
ボタンをクリックします 適切な名前を入力し、 ボタンをクリックします
エラーメッセージ
ポストプロセッサは自動的に以下をチェックします。
- ATCコマンドを含むファイルの保存用に構成済みか否か
- 使用する個別のカッターに固有の工具番号が定義されているか否か
上記のいずれかが不正な場合は、問題を示したエラーメッセージが表示されます。
テキスト作成
このフォームを使用して、任意の高さにテキストを作成することができます。使用される単位はデザイン中のモデルの単位になります。
Watch this video to see this in action: https://youtu.be/admEKCLmzX8
フォント選択
垂直フォント
@ 文字で始まるフォントは垂直下向きに描画され、常に左揃えで表示されます。
彫刻フォント
単線ラジオボタンによりフォントリストが変更され、速やかに彫刻されるフォントの選択肢が表示されます。
アンカー
テキストブロックの位置を設定します。直接値を入力、またはマウスカーソルを使用してインタラクティブに位置を設定します。
- 新規のテキストでは、2Dビューで使用する位置をクリックします。
- 既存のテキストでは、アンカーポイントハンドルを左クリックして使用する位置にドラッグします。
テキストインボックスモード
標準テキスト ツールは、専門のテキスト イン ア ボックス ツールに置き換えられました。
Watch this video to see this in action: https://youtu.be/eVS6vIHVrpY
境界サイズ
テキストが収められるボックスの実際のサイズを指定します。テキスト上で左マウスを2回クリックしてテキストをインタラクティブにスケーリング、またはスケーリングツールを使用して正確にスケーリングが行われると、境界が更新されて薄い灰色の正方形が表示されます。
マージン
テキストと境界間の距離です。
- なし:境界の幅または高さにフィットするようにテキストのスケーリングを行います。
- 標準:ボーダーの左右に10%ずつ残し、80%に収まるようにテキストのスケーリングを行います。
- 幅:ボーダーの左右に20%ずつ残し、幅の60%になるようにサイズを縮小します。
垂直ストレッチ
テキストをボックスの幅に収め、その上下にスペースがある場合、以下のいずれかの方法を使用して垂直スペースをテキストで埋めることができます。
水平ストレッチ
テキストをボックスの高さに収め、その左右にスペースがある場合、以下のいずれかの方法を使用して水平スペースをテキストで埋めることができます。
テキスト編集
以下のように、テキストのプロパティまたは作成済みのコンテンツを編集します。
- テキスト作成フォームが表示されている場合、編集するテキストをクリックします。
- テキスト作成フォームが非表示の場合、フォームを開く前に2Dビューでテキストを左クリックして選択します。これにより、フォームを使用して選択テキストのプロパティを編集することができます。
スペルチェッカー
テキストツールには、誤字を修正するためのスペルチェッカー機能が搭載されています。
- ソフトウェアはスペルをチェックし、誤字を赤い下線付きで表示します。
- 下線付き文字をクリックすると、訂正案が表示されます。
- 新規文字を追加するための文字を追加機能があります。
- 誤って追加した文字を削除するための文字を削除機能があります(ユーザに追加された文字に限る)。
- スペルチェッカーの言語は、ソフトウェアの言語と同一になります。
- 日本語以外のソフトウェアにサポートされている全言語の利用が可能です。
どちらのビューでも使用可能
このツールは 2D ビューと 3D ビューの両方で使用できます。
2D ビューでは、ベクターをより直接的に表示できますが、3D ビューでは、3D デザインでベクターを操作したり、編集ボックスを活用したりするための柔軟性が高まります。
2D輪郭工具経路
プロファイル加工は、ベクトルの周囲またはベクトルに沿って切断するために使用されます。オプションにより、オプションのタブ/ブリッジと完璧なエッジ品質を確保するためのオーバーカット/アンダーカットの許容値を使用して形状を柔軟に切り出すことができます。
プロファイル ツールパスは、選択したベクトルの外側、内側、または選択したベクトル上に配置でき、選択した切り込み深さのツール直径と角度が自動的に補正されます。
開いたベクトルを操作する場合、プロファイル ツールパスは選択したベクトルの左、右、または上に配置できます。
このアイコンをクリックすると、右側に示す 2D プロファイル ツールパス フォームが開きます。このフォームの機能については、次のページで説明します。
入れ子になっているベクトル (文字「O」など) がある場合、プログラムは自動的に入れ子を判断し、内側と外側のベクトルの正しい側を切り取ります。さらに、プログラムは常に、パーツが元のマテリアルにできるだけ長く取り付けられたままになるように、外側のベクトルよりも前に内側のベクトルをカットします。
加工深さ
開始深さ(D)
ツールパスが計算される深さを指定します。
ジョブの表面を直接切削する場合、開始深さは 0 になることが多いです。既存のポケットまたは 3D 領域の底部を加工する場合は、深さを入力する必要があります。
加工深さ(C)
開始深さに対するツールパスの深さ。
パス深度制御
ツールパスを作成すると、選択したツールに関連付けられたパス深度値 (ツールの説明の一部) を使用して、指定されたカット深度までプロファイルするために必要なパス数が決定されます。ただし、デフォルトでは、ソフトウェアは正確なステップダウンをどちらの方向にも最大 15% まで変更します (そうすることで、目的のカット深度に達するために必要なパスの合計数を変更できる場合)。可能であれば、パスを少なくして切削することで大幅に短縮された加工時間を活用することがほとんどです。ただし、積層材料を切削する場合など、特定のプロファイル パスの正確なステップダウンをより正確に制御する必要がある場合があります。[パス] セクション ページには、現在の設定で作成されるパスの数が表示されます。ボタンをクリックすると、パスの特定の数と高さを直接設定できる新しいダイアログが開きます。
パスの深さを指定する
フォームの上部にある パスの深さ セクションには、現在のパスの深さのリストが表示されます。パスの相対的な間隔は、リストの横の図に示されます。リスト内の深さの値、または図の深さの線を左クリックして選択します。現在選択されているパスは、図上で赤く強調表示されます。
選択したパスの深さを編集するには、深さ編集ボックスの値を変更し、 をクリックします。
ボタンを押すと選択したパスが削除されます。
パスボタンはすべてのパスを削除します。
新しいパスを追加するには、パス図でパスを追加するおおよその位置を左ダブルクリックします。新しいパスが追加され、自動的に選択されます。必要に応じて正確な深度値を編集し、 をクリックします。
最終パスの厚さを設定する オプションを使用すると、編集ボックスが有効になり、最後のパスで切断する材料の残りの厚さ (深さではなく) で最後のパスを指定できます。これは、多くの場合、この値を指定するより直感的な方法です。
パス深度リストユーティリティ
注記
これらのユーティリティのいずれかを使用してパスの数を設定すると、追加したカスタム パスはすべて破棄されます。
最初の方法は、選択したツールのステップの深さプロパティに基づいてパスを設定するだけです。デフォルトでは、これは Aspire が最初にプロファイル パスを作成するときに使用する方法です。ただし、[正確なステップ深さを維持] オプションがオンになっている場合、ソフトウェアはパスの数を最適化するためにステップ サイズを変更しません (上記を参照)。
2 番目の方法では、[パス数] 編集ボックスで指定された値に基づいて、均等間隔のパスが作成されます。
いずれかの方法を適用するには、[関連パスの設定] ボタンをクリックして、パス リストと図にパスの深さの結果セットを作成します。
ベクトルを加工...
選択ベクトルに相対した3つの工具の配置方法があります。
外側
内側
オン
方向
選択した方法に基づいて、加工方向をダウンカットまたはアップ加工から選択します。加工する素材と工具を考慮して、ダウンカットまたはアップカットを選択します。
公差オフセット
選択形状をオーバーカット(負の値で小さく)またはアンダーカット(正の値で大きく)するために公差を指定することができます。公差=0では、工具経路は正確なサイズで加工されます。
個別の最終パス
最後のパスには別の許容値を指定できます。この許容値が指定されている場合、最後のパスを除くすべてのパスが指定された許容値によってアンダーカットされ、最後のパスが サイズにカットされる唯一のパスになります。
注記
これは、工具が以前のすべてのパスがアンダーカットされているカットの完全な深さでこの許容値をカットする必要があるため、単に材料の薄いスキンを切り取ることを目的としています。最終パス許容値が工具直径の 1/3 より大きい場合は警告が表示されますが、最終パス許容値はこれよりも大幅に小さく保つのが理想的です。これをできるだけ小さくすると、前のパスが収まらない領域に最後のパスが収まる可能性が減り、最後のパスでカットしなければならない材料の量が減ります。ツールパスに最終パスの許容値を使用する場合は、最後のパスで切断するために残された材料の量に満足していることを確認する必要があります。最後のパスが、前のパスでクリアされていない材料にかなりの距離を切り込む場合、ツールパスは計算に失敗します。
[方向を反転] ボタンが ✓ にチェックされている場合、最後のパスの切断方向が逆になります。この機能は、プロファイル カットのエッジにある証跡マークを最小限に抑える場合に役立ちます。
最後のパスの許容値には許容値のオフセットも考慮されるため、2 つのオプションを一緒に使用できます。
ベクトル始点を使用
始点を使用を選択し、形状の最初のポイントで工具経路に切り込みを強制して加工を開始することができます。これはジョブの臨界部へのカッターの切り込みを避ける場合に有用です。例えば、コーナー上に始点を設定すると加工済みのサーフェスに傷を残さないため、多くの場合で切り込みと加工開始に最適な位置になります。
オプションの選択時には、始点はベクトル上で緑色のボックスとして表示されます。ベクトル上の始点の位置を移動するには、ノード編集ツールを使用します。ノード編集カーソルを選択またはNキーを押下します。始点として使用するノード上にカーソルを配置します。右マウスボタンをクリックして始点を設定を選択(またはPキーを押下)します。コンテキストメニューの使用またはPキーの押下により、ベクトルの任意の位置に新規ポイントを挿入することができます。そのため、新規ポイントを挿入して、それを始点にすることもできます。
注記
始点を使用により、加工が行われる各形状間の移動により多くの時間を要する可能性があるため、工具経路が非効率的(加工時間の増加など)になる場合があります。このオプションが未選択の場合は、ソフトウェアはリンク動作の距離を最小限に抑えて、最短の工具経路の算出を試行します。ただし、この場合カッターが加工済みのエッジの重要なサーフェスに切り込み、結果として傷を残す恐れがあります。
タブ(ブリッジ)
素材からパーツを切り抜く際に、パーツをその場所に保持するためにタブが開閉両方のベクトル形状に追加されます。
工具経路にタブを追加
[タブを追加]オプションを選択(✓)し、工具経路のタブをアクティブにします。各タブのサイズは長さと厚さで指定されます。3Dタブを生成するには、[3Dタブを生成]オプションを選択(✓)します。2Dタブとの相違は以下を参照してください。
3Dタブを生成
このオプションを選択すると、タブの断面が三角形になります。これは、カッターが指定されたタブの厚さまで上昇し、その後反対側に下降するときに作成される形状です。 3D タブを使用すると、各タブの開始点と終了点で Z 方向に移動するために停止する必要がないため、マシンをより迅速かつスムーズに実行できることがよくあります。
このオプションがオフの場合、2D タブが使用されます。カッターは各タブの開始点で停止し、指定された厚さだけ垂直に上昇し、ランプを横切って停止し、反対側に下がります。
タブの厚さは、材料の底部ではなく、カット深さの底部から測定されます。
輪郭オプション
ツールパス フォームのプロファイリング オプション セクションには 5 つの追加ページが含まれており、各ページで特定のプロファイル加工オプションのセットを指定できます。オプション ページの正確な数は、現在使用しているツールパス戦略によって異なります。オプション ページの全範囲は次のとおりです。
- スロープ
- リード
- 順序
- 始点
- 角
これらは、最高品質のエッジ仕上げを保証しながら、部品が所定の位置に保持され、できるだけ簡単に加工されるように方法を制御するのに役立ちます。
オプションの各セットには、「プロファイル オプション」セクションの上部にあるタブからアクセスできます。
ランプ
ランプ動作は、カッターによる素材への垂直切込みを回避するために使用されます。カッターは任意の角度で徐々に加工を開始し、素材に切り込んでいきます。これによりカッターの摩耗、熱の蓄積、マシンのルータスピンドルとZ軸の負荷を大幅に削減することができます。パス深さが加工深さより小さいために複数のパスが必要な場合は、ランプ動作は各レベルの開始に適用されます。全てのランプ動作は、現行工具に選択された切込み速度で実行されます。
スムーズ
このオプションは、指定された距離または角度のいずれかを使用して、マテリアル内に滑らかなランプを作成します。
リードインの距離が指定されている場合、[リードインのランプ]オプションにより距離と角度のオプションが無効になり、ランプの移動がツールパスのリードイン部分のみに限定されるように自動的に制限されます。
ジグザグ
このオプションは、指定された距離または角度と距離のいずれかを使用して、マテリアルを前後にジグザグにランプインします。
[距離]オプションはマテリアル内にランプインし、指定された距離だけ一方向にジグ運動し、その後同じ距離をジグ運動して戻ります。
[角度] オプションは通常、垂直方向に突っ込むことはできないが、メーカーが指定した進入角度を持つカッターに使用されます。
スパイラル
✓ にチェックを入れると、連続的な螺旋ランプが作成されます。これらは、ツールパスに移動の先頭が含まれていない場合にのみ使用できます。
このオプションは、プロファイル パスの全周にわたって材料に傾斜を付けます。角度は自動的に計算され、開始点からジョブの周囲の距離全体にわたって深さ全体に傾斜します。
カッターが材料に進入する速度は、カッターに指定されたパス深さによって決まります。たとえば、パス深さが 0.5 以上のカッターを使用した深さ 0.5 インチのスパイラル プロファイリングは、1 パスで螺旋状に下降します。パスの深さを 0.25 インチに編集すると、プロファイルの周りに 2 つのスパイラル パスが作成されます。
リード
リードイン/リードアウトを輪郭工具経路に追加して、一般的にジョブのエッジにカッターが垂直に切り込むことで発生するコンポーネントエッジの傷を回避することができます。
直線リード
このオプションは、指定された角度とリード長さの距離を使用して、カッター パス上に直線リードを作成します。
ツールパスは、指定した角度で選択したエッジにつながります。
[リードアウトを行う] オプションを ✓ にチェックすると、加工エッジから離れたツールパスの終端に出口リードが追加されます。
オーバーカット距離は、カッターに開始点を超えて加工を強制し、部品のエッジ品質を向上させるためによく使用されます。
円弧リード
このオプションは、指定された半径とリード長さの距離を使用して、ツールパス上に円弧リードを作成します。
半径と角度を入力すると、長さが自動的に通知されます。角度の範囲は 0.1 ~ 90 度です。
ツールパスは、実際のジオメトリ エッジに達する点でベクトルの方向に接して、選択したエッジ上に曲線を描きます。
[リードアウトを行う] オプションを ✓ にチェックすると、加工エッジから離れたツールパスの終端に出口リードが追加されます。
オーバーカット距離は、カッターに開始点を超えて加工を強制し、部品のエッジ品質を向上させるためによく使用されます。
順序
[順序] タブでは、ベクトルをカットする最適な順序を決定するためにプログラムが使用するアプローチを指定できます。複数のオプションを指定できます。その場合、プログラムは各オプションを使用した結果を計算し、加工時間が最短となるオプションを選択します。
ベクトル選択順序
このオプションでは、ベクトルを選択した順序で加工します。文字「O」のように互いの内側になるベクトルがある場合は、選択順にかかわらず外側のベクトルの前に内側のベクトルが常に加工されます。
左から右
このオプションでは、素材の左側のパーツを結合してから右側に移動します。
下から上
このオプションでは、素材の下側のパーツを結合してから上側に移動します。
グリッド
このオプションでは、グリッドベースのアプローチを使用して結合します。グリッドのサイズはパーツサイズに基づきます。アルゴリズムは、移動前にグリッドの特定のセクション内にあるパーツの結合を試行します。
始点
現行始点を維持
ベクトルの始点が工具経路の始点を指定します。
始点を最適化
ソフトウェアはジョブを完成する速度に基づいて、自動的に各輪郭の開始位置の最適化を試行します。
境界ボックス上の最近接
輪郭ベクトルの境界ボックスから始点付近になる場所を定義して、始点を指定します。
この場合、全スパンの終点からの最近接ポイントを検索し、当該ポイントから工具経路を開始します。
位置と選択のプロパティ
セーフZ
高速/最大送り速度でカッターを安全に動かすことができるジョブ上の高さ。この寸法は、マテリアル設定フォームを開いて変更できます。
ホームポジション
加工の前後にツールが移動する位置。この寸法は、マテリアル設定フォームを開いて変更できます。
ツールパスを3Dモデルに投影する
このオプションは、3D モデルが定義されている場合にのみ使用できます。このオプションをオンにすると、ツールパスが計算された後、3D モデルの表面に Z 方向に投影 (または「ドロップ」) されます。材料の表面下の元のツールパスの深さが、モデルの表面下の投影された深さとして使用されます。
注記
ツールパスが 3D モデルに投影されると、その深さは材料の底部を超えないように制限されます。
ベクトル選択
ツールパス ページのこの領域では、ベクトルのプロパティまたは位置を使用して、加工するベクトルを自動的に選択できます。また、この方法を使用してツールパス テンプレートを作成し、将来同様のプロジェクトでツールパス設定を再利用することもできます。詳細については、セクション ベクトルセレクターと高度なツールパステンプレートを参照してください。
名前
ツールパスの名前を入力することも、デフォルトの名前を使用することもできます。
面取り工具経路
面取りツールパスは、選択したベクトルとツールを使用して角度付きフィーチャーを作成します
面取り 工具経路 には、使用するツールに応じて 2 つの異なる操作方法があります。
- 選択した工具が角度付き工具の場合、工具の角度によって面取りの角度が決まります。
- 選択した工具が丸いノーズ工具の場合、面取りの角度は手動で指定する必要があり、一連の細かいカットによって近似されます。
工具
ボタンをクリックすると、必要なツールを選択できるツール データベースが開きます。詳細については、ツール データベースのセクションを参照してください。 ボタンをクリックすると、ツール編集フォームが開き、データベースのマスター情報を変更せずに、選択したツールの切削パラメータを変更できます。マウス カーソルをツール名の上に置くと、ツール データベースのどこからツールが選択されたかを示すツール ヒントが表示されます。
面取り寸法
面取り寸法は、作成される面取りの形状を制御します。
角度(A)
角度によって面取りの傾斜が決まります。垂直方向から計測しております。
ツールパスに V ビット ツールが選択されている場合、角度はツールの角度の半分に固定されます。
丸い先端の工具の場合、角度を指定できます。
幅(W)
幅は面取りの水平サイズを決定します。角度が設定されている場合、幅の変更に比例して加工深さが変更されます。
加工深さ(C)
加工深さは面取りの高さです。角度が設定されている場合、加工深さの変更に比例して幅が変更されます。
最大加工深さ
[加工深さ]フィールドに指定された面取りの高さを得るには、より深く掘る必要がある場合があります。これは丸型先端工具の使用時に生じます。
[最大加工深さ]フィールドは読み取り専用で加工の全長を表示するため、工具が加工する正確な深さを確認することができます。
オーバーカット
面取りにV-ビット工具を使用する場合、工具エッジを使用し、工具のポイントをパーツから外した方が良い場合があります。マシンの小さな動作と素材の性質により、ポイントにより予定外の傷が残される場合があるためです。オーバーカットコントロールを使用し、工具中心をオフセットし、工具側面で加工を行うための値を指定することができます。
注記
工具側面の長さは未知のため、オーバーカット距離の指定時には、工具の加工エッジがオーバーカット距離を収めるのに十分であることを確認してください。
面取りタイプ
面取りタイプオプションは面取りの傾斜方向と面取りが内側と外側のどちらに行われるかを制御します。
- 内側面取りは、選択ベクトルの内側になります。
- 外側面取りは、選択ベクトルの外側になります。
傾斜方向は、選択ベクトルに相対して面取りが上向きと下向きのどちらであるかを識別します。
どちらのオプションも異なる面取りスタイルを生成するために同時に使用可能です。
2Dプレビュー
面取りが配置される傾斜を表示するために、小さな線が選択ベクトルから外向きに伸びます。線状の矢印が傾斜方向を表します。矢印は下向きの傾斜方向で常に下向きになります。
位置と選択のプロパティ
セーフZ
高速/最大送り速度でカッターを安全に動かすことができるジョブ上の高さ。この寸法は、マテリアル設定フォームを開いて変更できます。
ホームポジション
加工の前後にツールが移動する位置。この寸法は、マテリアル設定フォームを開いて変更できます。
ベクトル選択
ツールパス ページのこの領域では、ベクトルのプロパティまたは位置を使用して、加工するベクトルを自動的に選択できます。また、この方法を使用してツールパス テンプレートを作成し、将来同様のプロジェクトでツールパス設定を再利用することもできます。詳細については、セクション ベクトルセレクターと高度なツールパステンプレートを参照してください。
名前
ツールパスの名前を入力することも、デフォルトの名前を使用することもできます。
工具経路テンプレートを読み込み
以前に保存したツールパス テンプレートを ( ツールパス ► テンプレート ► テンプレートの読み込み...を使用して) 読み込むと、空のツールパスが作成されます。このツールパスは、ツールパス リストでその名前をダブルクリックするか、[ツールパス] タブの [ツールパスの編集] アイコンを選択することで編集できます。ツールパス フォームが開くと、加工するベクトルを選択し、保存されているすべての設定を使用してツールパスを計算できます。
現在のファイルに存在しないレイヤーに関連付けられたツールパスを含むツールパス テンプレートをロードすると、 テンプレートのレイヤーがありません ダイアログが表示されます。欠落しているレイヤーをすべてリストし、それらを自動的に作成するか、欠落しているレイヤーに関連付けられているツールパスを削除するか、ツールパスをそのままロードするかを選択できます。
消失したレイヤの自動作成を選択すると、工具経路テンプレートを使用して加工操作用の「標準」レイヤを作成し、計算用に工具経路を読み込むことができます。これにより、ベクトルを適切なレイヤに移動して、すべての工具経路を再計算することができます。
消失したレイヤに関連する全工具経路の削除を選択すると、多くの工具経路で単一テンプレートを作成し、現行ジョブに不適切なすべての工具経路を自動的に削除することができます。
複数のシート
プロジェクト内に複数のシートがあるプロジェクトにテンプレートが読み込まれると、そのテンプレートをプロジェクト内のすべてのシートに適用することが提案されます。
加工時間見積もり
このオプションを使用して、各工具に指定された送り速度に基づいて、計算済みの全工具経路の加工時間を見積ります。ユーザー定義された早送り移動とスケール係数を使用して、個別の工具経路と表示中の全工具経路の合計加工時間の見積もりが計算されます。
スケール係数
異なるスタイルの工具経路の特性により、工具経路は単純な2D切削であったり、同時3軸動作が必要になる場合もあります。工具経路がより複雑になるにつれて、CNCマシンではプログラムされた送り速度の実行が困難になる場合があります。このような場合に、時間をスケール係数で乗じて補正することができます。
プログラム内のスケール係数を使用して、マシンの減速を近似することができます。しかし、これは実行中の作業タイプにより異なります。多くのユーザーが、単純な2Dの作業と3DまたはV-Carvingに1つずつのスケール係数を使用します。最良な計算方法は、任意の期間の見積もりと実際の加工時間のサンプルを取ることです。
コントローラーが加工時間の見積もりを提供するマシンタイプでは、コントローラーがマシンの加減速を決定してそれを考慮するより正確な見積もりを得ることができます。
2Dビューコントロール
ルーラー、ガイド、スナップグリッドセクションも参照してください。
パン | 左マウスボタンを押しながら、マウスをパン方向にドラッグします。ESCキーでモードをキャンセルします。 ショートカット: マウスの中ボタンをクリックしてドラッグするか、2 ボタン マウスを使用している場合は、 Ctrl を押したままマウスの右ボタンでドラッグします。 | ||
ズームインタラクティブ | 中央ホイール付きマウス - ホイールをスクロールイン/アウトします ホイールなしマウス:シフトキーを押しながら右マウスボタンをプッシュ/プルします。 | ||
ズームボックス | 左上のコーナーをクリックし、マウスボタンを押しながら右下のコーナーまでドラッグして放します。左マウスボタンのクリックは拡大、シフトキーを押しながらクリックすると縮小します。 | ||
範囲をズームする | ズームして 2D ウィンドウにマテリアルの制限を表示します | ||
選択したものをズーム | オブジェクトを選択した状態 選択範囲の境界ボックスにズームします |
シート
ジョブ内に複数のシートがある場合、シートの外形が2Dビューに表示されます。
ここでは、シート 1 がアクティブなシートであることがわかります。
シートの境界外にベクトルが配置されると、2Dビューの境界がそれを示すために更新されます。
シート管理タブ を使用または2Dビューのシートをダブルクリックして、シートをアクティブにすることができます。
元に戻す操作
デザインに行われた変更を順に戻ります。
円弧作成
円弧作成ツールでは、正確な値を使用して単一円弧スパンを作成することができます。または、2Dビュー内で動的に作成することもできます。
Watch this video to see this in action: https://youtu.be/3VzE89aug5o
中心点/始点/終点
- 2Dビューで左マウスクリックし、円弧の中心点を設定します。
- 再度クリックして始点を設定します。
- マウスを移動して3点目をクリックし、円弧の終点を設定します。
注記
右マウスボタンをクリックまたはEscキーを押下すると、可能な場合は円弧の作成を完了してフォームを閉じます。
素材セットアップ
工具経路タイリングマネージャ
工具経路タイリングオプションを使用して、CNCのマシンベッドの利用可能領域よりはるかに大きなオブジェクトの加工とデザインが可能です。この工程は、素材ピースの最大サイズが制限されている場合にも有用です。どちらの場合でも、工具経路を管理可能な複数のタイルまたは細長片に細分化して行います。各ピースはCNCマシンまたは利用可能な素材ブロックの加工可能な領域内に収まります。加工後にタイルを再アセンブリし、完成品を作成することができます。
タイリング工程は、通常どおり最終オブジェクトに基づいた工具経路の作成から開始します。この時点では、利用可能なマシンベッドのサイズは考慮する必要がありません。必要な全工具経路の計算が済んだら、工具経路ペインの工具経路タイリングボタンをクリックし、工具経路タイリングフォームを開きます。
タイリングオプション
タイリングされた工具経路に対し、3つのレイアウト方法を使用することができます。最も適切なオプションは、マシンの性能と利用可能な素材により異なります。
個別タイル
最初のタイル オプションは個々のタイル用です。これにより、現在のジョブが X と Y の両方に分割され、まったく別個の一連のツールパスが形成されます。これは、機械加工する独立した材料がある場合、または機械加工可能領域の外側に材料を「オーバーハング」させることができない移動ベッド タイプの CNC マシンを使用している場合に、一般的に推奨されるオプションです。
このオプションを選択すると、各タイルの幅と高さ、および必要なオーバーラップ (各方向に適用されます) を指定するように求められます。タイルはモデルの左下から作成されます。独立したタイルのオーバーラップは、ツール ビットの形状を利用する 2.5D ツールパス (V ビット カービングなど) では特に重要です。 2.5D ツールパスは、ビットの側面を使用してカットを完了するために、タイルのエッジを「オーバーラン」する必要があります。このため、独立タイルのオーバーラップ距離は通常、少なくとも工具ビットの半径と等しい必要があります。
X軸方向/Y軸方向
一連の個別素材ピースを加工してからアセンブリする代わりに、カット間の加工可能領域を通じて素材を移動し、一連のセットアップを使用して素材の1細長片をカットすることもできます。ASPIREはX軸方向/Y軸方向オプションを使用して、この手法をサポートします。この場合、(予定する軸の距離に対応する)タイルの幅または高さの定義のみが必要です。もう一方の寸法は素材の短いサイドに対応すると仮定され、現行ジョブ寸法の対応部に一致されます。同様に、重複距離は表示方向のみに適用されます。一般的に各工具経路タイルで素材の同じピースを加工するため、軸方向の重複距離は個別のタイルほど重要ではなく、セットアップ精度のエラーのマージンを許容するために使用されます。
タイリングオプションを設定したらタイルを更新ボタンをクリックし、2Dまたは3Dビューのタイルプレビューで反映された設定を確認します。
最小タイルから加工
このオプションが未選択の場合、タイルの間隔は指定サイズのパーツに分割されます。残りのスペースは最後に配置されます。このオプションの選択時には、残りのスペースは最初に配置されます。
タイルプレビュー
2Dビューは、モデル領域が複数のタイルに分割される方法を示します。黄色の線はタイルサイズ、薄い赤色の領域は各タイルの重複領域を表します。
タイルをダブルクリックすると、当該タイルがアクティブになります。
3Dビューでは工具経路がタイル表示され、アクティブタイル内の移動のみが表示されます。
タイリングされた工具経路のシミュレーション
3Dビューで、個別工具経路タイルの表示とシミュレーションが可能です。工具経路タイルを表示するには、工具経路が表示(工具経路リストで選択✓)されていることを確認し、[工具経路タイリング]フォームまたは2Dビューのいずれかで該当するタイルを選択します。
タイルは同一の加工可能領域内で加工されるように作成されているため、加工原点に相対して類似した位置に配置されています。そのため、工具経路のプレビューでは視覚化が困難になる場合があります。各工具経路タイルをその絶対位置でシミュレーションすると、プレビューブロックの同一領域で工具経路の加工が行われ、当該領域のオーバーカットの原因になります。[工具経路タイリング]フォームには、視覚化用に元の位置で工具経路を表示するオプションがあります。これにより、タイルが最終パターンに配置されているかのようにシミュレーションされます。このオプションの有効時には、すべての工具経路タイルを共にプレビューし、最終ピースの外観を視覚表示することができます。しかし、加工原点からの各工具経路の真のオフセットは反映されない点に注意してください。
工具経路タイルを保存
[タイル ツールパス] フォームを使用してツールパス タイルを作成した場合、ツールパス保存フォームで追加オプションの [タイル ツールパスの出力] が使用可能になります。
[タイル ツールパス] フォームの [タイル ツールパス] チェック ボックスの現在の状態に合わせて、✓ がチェックされるかオフになります。
2Dデザインと管理
2D ビューは、完成したパーツのレイアウトを設計および管理するために使用されます。厳密に 2D であるアイテム、または 3D ビュー内のオブジェクトの 2D 表現であるアイテムをユーザーが制御できるようにするために、さまざまなエンティティが使用されます。これらの 2D ビュー エンティティのリストについては以下で簡単に説明し、このマニュアルの後のセクションで詳しく説明します。
これらすべてのさまざまなタイプのオブジェクトの最終的な目的は、CNC 上で必要な部品を切断するために必要なツールパスを作成できるようにすることです。これは、これらが 3D モデルの基礎を作成するのに役立つこと、またはツールパスの境界形状の記述など、ツールパスにより直接的に関連していることを意味する場合があります。これらの 2D アイテムのさまざまな用途や用途は、それらの整理が非常に重要であることを意味します。このため Aspire には 2D データを管理するための レイヤー機能 があります。レイヤーは、さまざまな 2D エンティティを関連付けて、ユーザーがそれらをより効果的に管理できるようにする方法です。レイヤーについては、このマニュアルの関連セクションで後ほど詳しく説明します。両面プロジェクトを使用している場合は、同じセッション内で「上」面と「下」面を切り替えることができ、各面でデータを作成および編集できるようになり、「多面ビュー」オプションを使用して次のデータを表示できます。反対側のベクトル。両面セットアップについては、このマニュアルの関連セクションで後ほど詳しく説明します。
ベクトル
ベクトルは線、円弧、曲線であり、直線のように単純なものもあれば、複雑な 2D デザインを構成することもできます。 Aspireでは、ツールパスが従う形状を記述したり、デザインを作成したりするなど、多くの用途があります。 Aspire には、このマニュアルで説明されている多数のベクター作成および編集ツールが含まれています。
多くのユーザーは、ソフトウェア内でベクターを作成するだけでなく、Corel Draw や AutoCAD などの他の設計ソフトウェアからベクターをインポートすることもあります。 Aspire はインポート用に次のベクトル形式をサポートしています: *.dxf、*.eps、*.ai、*.pdf、*skp、および *svg。インポートしたデータは、ソフトウェア内のベクター編集ツールを使用して編集および結合できます。
ビットマップ
ビットマップは*.bmp、*.jpg、*.gif、*.tif、*.png、*.jpegのピクセルベースのイメージ(写真など)の標準のコンピューター用語です。これらのファイルタイプは非常に小さな正方形(ピクセル)に構成されるイメージで、スキャンされた写真、デジタル写真、インターネットから入手したイメージなどが相当します。
3Dモデルの作成を簡素化するために、Aspireでは「コンポーネント」と称される管理可能なピースにデザインを分割することができます。2Dビューでコンポーネントはグレースケール形状で表示され、選択、編集、移動、サイズ変更などが可能です。グレースケールを使用した作業方法は、マニュアルの関連するセクションを参照してください。ビットマップと同様に、選択したコンポーネントグレースケールで多くのベクトル編集ツールを利用することができます。
インタラクティブに選択モード
インタラクティブ 移動、 回転、 拡大縮小 選択ツールを使用すると、ベクターとコンポーネントを迅速かつ簡単に変更できます。
選択したオブジェクトの 1 つを 2 回クリックすると、このアイコンを選択したのと同じ方法で、インタラクティブな拡大縮小、移動、回転のハンドルが表示されます。線、円弧、ベジェ スパンはマゼンタの点線で表示され、テキストとグループ化されたオブジェクトはマゼンタの実線で表示されます。
変換ハンドル
このモードでは、選択したベクトル上に表示されるハンドルの 1 つをクリックするためにマウスが使用されます。各変換ハンドルは、2D ビューで詳しく説明されているように、特定の編集操作に使用されます。
- 中央 - ベクトルを移動します (押したまま代替 選択したオブジェクトを 1 つの軸内で移動します)
- 中央 - もう一度クリックして、回転中心に切り替えます。回転アンカーをクリックしてドラッグし、現在の選択範囲の回転中心の位置を変更します。
- コーナー (白) - ベクトルを比例的に拡大縮小します (長押し +代替 非比例的に拡大縮小、+シフト 中心を中心に拡大縮小します)
- エッジ (白) - 1 つの軸でベクトルをスケールします (長押し +シフト 比例してスケールします)
- コーナー (黒) - 回転中心を中心にベクトルを回転します (押しながら代替 15° ずつ回転)。
オブジェクトの選択を解除するには、
- シフト が押されない限り、白い背景をクリックします。
- ESCを押してください
- 右クリックメニュー ► すべての選択を解除
3D ビューでは、変換ハンドルは次のとおりです。
- 中央 - ベクトルを移動します (押したまま代替 選択したオブジェクトを 1 つの軸内で移動します)
- 中央 - もう一度クリックして、回転中心に切り替えます。回転アンカーをクリックしてドラッグし、現在の選択範囲の回転中心の位置を変更します。
- コーナー (白) - ベクトルを比例的に拡大縮小します (長押し +代替 非比例的に拡大縮小、+シフト 中心を中心に拡大縮小します)
- エッジ (黒) - 1 つの軸でベクトルをスケールします (長押し +シフト 比例してスケールします)
- 回転矢印 (上の黒) - ベクトルを回転します (+代替 を押しながら 15 度ずつ回転します)
変換ハンドルを選択すると、そのハンドルに適切な編集ボックスがアクティブになります。
変換の正確な値が必要な場合は、このボックスをクリックして希望の値を入力し、その後 入力 を入力して新しい値を受け入れます。
どちらのビューでも使用可能
このツールは 2D ビューと 3D ビューの両方で使用できます。
2D ビューでは、ベクターをより直接的に表示できますが、3D ビューでは、3D デザインでベクターを操作したり、編集ボックスを活用したりするための柔軟性が高まります。
スケッチ彫刻format@@0
このツールは、ビットマップ画像または 3D モデルの領域間のコントラストの違いを使用してツールパスを作成し、輪郭のスケッチ スタイルの彫刻デザインを作成します。
選択
これにより、ユーザーは選択している画像が次のいずれであるかを指定できるようになります。
Bitmap
次の形式でインポートされた画像ファイル .BMP、.JPG、.GIF、.TIF、.TIFF、.PNG、.JPEG
3D モデル
次の形式の 3D ファイルのインポート: .STL、.V3M、.3DM、.SKP、.RLF、.3DS、.ASC、.PRJ、.X、.DXF、.LWO、.WRL、.OBJ
加工深さ
開始深さ(D)
ツールパスが計算される深さを指定します。
ジョブの表面を直接切削する場合、開始深さは 0 になることが多いです。既存のポケットまたは 3D 領域の底部を加工する場合は、深さを入力する必要があります。
加工深さ(C)
開始深さに対するツールパスの深さ。
工具
ボタンをクリックすると、必要なツールを選択できるツール データベースが開きます。詳細については、ツール データベースのセクションを参照してください。 ボタンをクリックすると、ツール編集フォームが開き、データベースのマスター情報を変更せずに、選択したツールの切削パラメータを変更できます。マウス カーソルをツール名の上に置くと、ツール データベースのどこからツールが選択されたかを示すツール ヒントが表示されます。
マシンの制限境界
スケッチ カービング ツールパスの外側の境界として使用するものを選択します
ビットマップの境界線
ビットマップまたは 3D ファイルの外側のエッジをツール操作の境界として使用します。
選択したベクトル
ベクトルを境界として使用して、ツールパス作成の範囲を制限できるようにします。
シフト を押したまま、スケッチ彫刻するビットマップまたは 3D モデルを選択した後、境界として使用する目的のベクトルを選択します。
選択されたレベル
コンポーネント レベルを選択して、そのレベルのコンポーネントを境界として使用して、ツールパス作成の範囲を制限できるようにします。
境界オフセット
上で選択した境界の外側で、ここで使用する距離以外の加工限界を増やします。デフォルト値は 0 です。
パラメータのトレース
[線の太さ] スライダーを使用すると、3D モデルまたはビットマップ イメージから作成されたスケッチ線の重みを調整できます。
これは 0 から 100 の間でスライドできます。
値が高くなるほど、スケッチの彫刻ラインは太くなり、重くなりますが、抽出されるディテールは少なくなります。
ここで、緑色でハイライトされた領域は、このツールパスでカットされる領域を示しています。線の太さを低くすると、より明るい詳細が抽出されますが、全体的にははるかに浅い領域がカットされ、線の太さが太くなると、最大の部分により強く適用されます。細かい部分をカットせずに、領域を切り取ります。
スケッチ カーブのグリーン ハイライトを確認すると、ツールパスを計算する前にどのようにカットされるかをよく理解できます。
位置と選択のプロパティ
セーフZ
高速/最大送り速度でカッターを安全に動かすことができるジョブ上の高さ。この寸法は、マテリアル設定フォームを開いて変更できます。
ホームポジション
加工の前後にツールが移動する位置。この寸法は、マテリアル設定フォームを開いて変更できます。
ツールパスを3Dモデルに投影する
このオプションは、3D モデルが定義されている場合にのみ使用できます。このオプションをオンにすると、ツールパスが計算された後、3D モデルの表面に Z 方向に投影 (または「ドロップ」) されます。材料の表面下の元のツールパスの深さが、モデルの表面下の投影された深さとして使用されます。
注記
ツールパスが 3D モデルに投影されると、その深さは材料の底部を超えないように制限されます。
ベクトル選択
ツールパス ページのこの領域では、ベクトルのプロパティまたは位置を使用して、加工するベクトルを自動的に選択できます。また、この方法を使用してツールパス テンプレートを作成し、将来同様のプロジェクトでツールパス設定を再利用することもできます。詳細については、セクション ベクトルセレクターと高度なツールパステンプレートを参照してください。
名前
ツールパスの名前を入力することも、デフォルトの名前を使用することもできます。
ツールデータベース - カスタム名前付け変数
事前に設定された変数リストに加えて、ユーザーは、デフォルトのツール命名規則に含めることができないツールの他の属性を使用する独自のカスタム変数を定義するオプションもあります。これを使用すると、ユーザーが一目で 1 つのツールを別のツールから区別できるようになります。たとえば、工具の製造元、目的、材質を変数として含めることを選択でき、これらを変数として個別または工具のグループ全体に適用できます。
カスタム変数の作成
カスタム属性変数フォームには、ツール データベース内からアクセスできます。
1. ツールパス パネル内のツール データベース ボタンをクリックするか、ツール データベースを開きます。ツールパス (メニューバー内) > ツールデータベース
2. カスタム変数を作成したい特定のツールを選択し、フォームのメイン ツール ジオメトリ セクションのメモ フィールドの右側にある [変数] ボタンをクリックして、[カスタム属性変数] フォームを開きます。
3. フォームの最上部の [新しい変数] の下に 2 つの編集ボックスが表示されます。
- 名前 – これは変数のタイトルで、必要な値を実現するためにツール名フィールドに入力する必要がある式を指定します。
- 値 – これは、ツール名フィールドに入力されたときに、対応するユーザー定義式を置き換える結果のテキストです。
これは、ツール名内に X 値が必要な場合は、波括弧 {Y}内に名前 Y を入力する必要があることを意味します。 Y は、カスタム属性変数フォームの名前フィールドで定義されます。
4. 編集ボックスの右側にある [作成] ボタンをクリックして変更を適用し、カスタム変数を作成します。その後、[OK] をクリックしてフォームを閉じます。
カスタム変数の適用
- メモフィールドの上にあるツール名の横にある「編集」ボタンをクリックします。
- 文字列内の値を配置したい場所にカーソルを置きます
- 右クリック > [カスタム属性変数] > [検索] を選択し、リスト内の正しい名前を選択します。
注記
カスタム変数は、プレフィックスを付けて手動で入力するのではなく、作成してリストから選択する必要があります。これは、ソフトウェア独自の事前設定変数との競合を防ぐためです。カスタム変数の目的は純粋に組織化であり、ツール パラメータやツールパス出力に影響を与えることはできません。
- フォームの下部にある「OK」をクリックして変更を適用します。
ベクトルをインポート
これにより、[ファイルを開く]ダイアログ ウィンドウが開き、2D ベクターの DXF、EPS、AI、および PDF ファイルを 2D ビューにインポートできるようになります。インポートされたベクトルは常に、元の設計ソフトウェアで作成されたサイズとスケールで読み込まれます。開くと、Aspire で作成したベクターと同じ方法で拡大縮小したり編集したりできます。すべての Vector ツールについては、このマニュアルのそのセクションで説明します。
また、画像ファイルを選択して、現在開いているジョブにインポートすることもできます。ファイルの種類 - BMP、JPG、TIF、GIF、PNG
画像は、その上にベクトルをスケッチするためにインポートされ、トレースされたベクトルを生成するか、Aspire の使用時に画像から直接 3D コンポーネントを生成するために使用されます。これらの機能については、デザイン ツールのモデリング セクションで詳しく説明します。
PhotoVCarve および Cut3D (ファイル拡張子 .PVC および .V3D) からツールパスをインポートするには、 ファイルメニュー バーから [ファイル] ► [インポート...] ► [PhotoVCarve または Cut3D ツールパスをインポート] を使用します。 .PVC または .V3D ファイルとして保存されたツールパス データはインポートでき、 ツールパスリストに表示されます。
PhotoVCarve(*.pvc)、Cut3D(*.v3d)、または Vectric 3Dmachinist(*.v3m) ファイルのインポートに関する詳細な手順については、 3D ツールパス ファイル セクションを参照してください。
2D ツールパスを使用したシンプルなロータリー モデリング
基本的な列のベクトルの作成
このセクションでは、プロファイルと溝加工ツールパスを使用して単純な柱を作成する方法を説明します。
新しいロータリー ジョブの作成から始めてください。ここに示されている設定は単なる例であり、マシンのセットアップと利用可能な材料に合わせて調整する必要があることに注意してください。
この例では、ブランクは X 軸を中心に回転します。これを 回転軸と呼びます。ラップされる軸は Y 軸です。これを 巻き付けられた軸と呼びます。これは、2D ワークスペースの上部と下部の境界が実際には一致することを意味します。それらを 包まれた境界線と呼びます。
まず、 線/ポリラインを描くツールを使用してコーブ ベクトルを作成します。これらは、デザインの両端でラップされた軸に沿って実行されます。 スナップ は、作成された線が折り返された境界で開始および終了することを確認するのに役立つ場合があります。
この例では、入り江は作業境界から 1 インチの位置に配置され、縦溝流路のために中央に 10 インチが残されています。フルートは回転軸に沿って走ります。入り江と縦溝流路の始まりとの間に 0.5 インチの隙間があると仮定すると、縦溝流路の長さは 9 インチになります。この例では 8 本のフルートを使用します。
まず、回転軸に平行な長さ 9 インチの線を作成します。次に、作成したフルート ベクトルを選択し、 シフトを押しながら入り江ベクトルの 1 つを選択します。次に、 ベクトル沿いにコピーツールを使用して 9 のコピーを作成します。元のフルート ベクトルは不要になったので削除できます。最初と最後のコピーはどちらもラップされた境界上に作成されることに注意してください。つまり、それらは一致するので、そのうちの 1 つを削除できるということです。最後のステップとして、すべてのフルート ベクトルを選択し、 F9 を押してデザインの中心に配置します。
回転ツールパスの作成
2D 回転ツールパスを作成するプロセスは、シングル モデルおよびダブル モデルのツールパスを作成するプロセスと非常に似ています。この例では、入り江ベクトルでプロファイル ツールパスを使用します。ツールパスを作成するには、入り江ベクトルを選択し、から プロファイル ツールパスをクリックします。
フルートのツールパスを作成するには、フルート ベクトルを選択し、 溝工具経路をクリックします。この例では、フルート深さ 0.2 に設定された 1 インチ 90 度 V ビットを使用し、開始および終了時のランプおよびランプ タイプ スムーズ オプションを使用しました。ランプの長さは 0.25 インチに設定されました。両方のツールパスを以下に示します。
ツールパスのシミュレーションと保存
工具経路をプレビューを使用してツールパスをシミュレートします。プレビューをアニメーション化するオプションが選択されている場合、シミュレーションはフラット モードで視覚化されます。シミュレーションが完了すると、ラップされた回転ビューが自動的にオンに戻ります。
片面および両面シミュレーションとは対照的に、回転シミュレーションは 100% 正確ではありません。たとえば、丸い穴は回転ビューでは楕円形として表示されますが、パーツが実際に加工されると明らかに円形になります。
デザインは完成したと考えられますが、実際には、残ったストックを切り出すことができると便利です。これは、デザインを少し長くし、プロファイルカットを追加することで実現できます。この例では、 ジョブセットアップを使用してブランクの長さを 2 インチ延長しました。 F9を使用して既存のベクトルを中心に戻すことができます。その後、既存のツールパスを再計算する必要があります。
切り出しベクトルはコーブベクトルと同じ方法で作成できます。適切なエンドミルを使用して、2 つの追加のプロファイル ツールパスを作成できます。この例では、直径 0.5 インチのタブを使用しました。これを実現するには、 切込み深さ ボックスに「z-0.25」と入力し、= を押すと、ソフトウェアが計算結果を置き換えます。式で使用される変数「z」は、ソフトウェアによって自動的に空白の半径に置き換えられます。必要に応じて マシンベクトルの外側/右側 または マシンベクトルの内側/左 を指定することも重要です。カットアウト ツールパスとその結果のシミュレーションを以下に示します。
最後のステップは、マシンが受け入れられる形式でツールパスを保存することです。 工具経路保存 を使用して、お使いのマシンに一致するラップされたポストプロセッサを選択します。
注記
この例で示されているツールと値は、説明のみを目的としています。安全で正確な加工を確保するには、工具のサイズ、送り速度、タブの直径などを使用する材料や機械に適合させる必要があります。
スパイラルツールパス
このセクションでは、スパイラル ツールパスを作成およびシミュレートする方法について説明します。
スパイラル ツールパスについて考える 1 つの方法は、細長い布のストリップを想像することです。このようなストリップは、特定の角度でロールに巻き付けることができます。ブランクの周囲を複数回囲むツールパスを作成するには、特定の角度で長いベクトルを作成します。このようなベクトルは、ロールから巻き戻されたときの布地のストリップに相当します。
このようなツールパスは回転ジョブの 2D ワークスペースを超えますが、シミュレーションと機械加工の両方でのラッピング プロセスのおかげで、ツールパスは実際には材料の境界内に留まります。
スパイラル ベクトルの設計で最も重要な部分は、指定された数のラップをもたらす線の正しい角度と長さを決定することです。回転軸に平行ではなく、螺旋溝を使用するように単純な柱の設計を変更したいとします。次の例ではフルート ラッピングを 3 回ずつ使用しますが、この方法は他の回数にも適用できます。
既存のフルート ベクトルは 1 つを除いてすべて削除できます。 線/ポリラインを描くを選択し、既存のフルートの一端をクリックして新しい線を開始します。この線は、巻き付けられた軸に沿って、ジョブの円周の 3 倍の長さで作成する必要があります。この例では、[角度] ボックスに 90 と入力し、[長さ] ボックスに y * 3 と入力して = を押すことを意味します。ラップされた軸が Y 軸ではなく X 軸である場合、上記の式は x * 3 となるはずです。
これで、元のフルート ベクトルと新しく作成されたフルート ベクトルのもう一方の端を結ぶ線を単純に描くことができます。 ベクトル沿いにコピー ツールを使用すると、この 1 つのフルートを前述の方法でコピーできます。この例では、以下に示すように 4 つの螺旋溝が作成されました。
フルート ベクトルの準備ができたら、 溝工具経路を使用してツールパスを再度作成できます。注意すべき重要な点は、ラップ ビューとフラット ビューでのスパイラル ツールパスの外観の違いです。 オートラッピングをクリックすると、ラップ回転ビューからフラット ビューに切り替え、またその逆に戻すことができます。
上で見られるように、平面ビューではツールパスはベクトルに従い、ジョブの境界を越えて広がります。一方、以下に示すラップされたビューでは、ブランクの周りをらせん状にツールパスが表示されます。
これは、回転加工の一般的な 2D ワークフローの簡単な概要にすぎません。回転加工専用のビデオ チュートリアルも忘れずにご覧ください。アプリケーションの初回起動時にチュートリアル ビデオ ブラウザのリンクからアクセスできます。
はじめに: オンラインマシン構成
Vectricは、広く使用されているマシン製造元に対し、複数の厳選されたマシン構成を提供しており、その数は増え続けています。
これは、オンラインでマシンを検索ダイアログからアクセス可能です。マシンを検出してダウンロードすると、工具セットの初期的な送りおよび速度と併せて工具データベースにインポートされます。また、互換性のあるポストプロセッサとも関連付けられます。
このすべての作業は、マシン構成ダイアログから実行および編集することができます。
マシンが見つからない場合
希望するマシンが見つからない場合は、次のステップまたは後ほど、マシン構成管理ダイアログを使用して手動で構成することができます。
スナップオプションダイアログ
作図、構成、レイアウトを補助するために、2Dビューのウィンドウ上部と左側にはルーラーが表示されます。2Dビューでベクトルの構成やその他のオブジェクトの配置をするために、ルーラーに加えガイドラインとスマートカーソルを使用することもできます。
ガイドライン
ガイド ラインは、レイアウト デザインを支援するために使用され、ガイドの交点をクリックすることで形状をスケッチするのが非常に簡単になります。ガイド ラインは、適切なルーラー上でマウスの左ボタンを押し (垂直ガイドが必要な場合は左、水平ガイドが必要な場合は上)、ボタンを押したままマウスを 2D ビューにドラッグすることで、2D ビューに簡単に追加できます。ビュー。
ガイドを所定の位置にドラッグすると、ルーラーに表示されている単位に自動的にスナップされます。このスナップ動作は、 シフト キーを押しながらガイドをドラッグすることで無効にすることができます。ガイドを配置した後、ガイド上で 右 マウス ボタンをクリックして、このセクションで後述するように [ガイド プロパティ] フォームを開くことで、ガイドを新しい位置に簡単に移動できます。ガイドラインの上にマウスを置くと、その現在位置がカーソルの横に表示されます。
既存のガイド上にインタラクティブにカーソルを置き (カーソルが 2 つの水平矢印に変わります)、 Ctrl キーを押したまま必要な位置までドラッグすることで、既存のガイド ラインを基準にして追加のガイド ラインを追加できます。ガイドライン間の増分距離がカーソルの横に表示されます。 Ctrl キーを放すと、マテリアルの原点からの絶対距離の表示に変わります。
右 ガイドラインをクリックすると、ガイドの追加やその他の編集を行うことができ、ガイドのプロパティ フォームが表示されます。
新しいポジションを入力すると、正確な位置を指定できます。
新しい角度 ボックスに角度を入力するか、スライダーをドラッグして をクリックすることで、ガイドに角度を与えることができます。角度は、x 軸から反時計回りに度単位で測定されます。角度の付いたガイドからは、相対的に平行なガイドのみを作成できます。
ロックガイド オプションにチェックを入れることで、ガイドラインを所定の位置にロックして不注意に移動しないようにすることができます。
絶対座標または増分座標を使用して配置される追加のガイド ラインを追加できます。絶対位置または相対位置を入力し、 をクリックします。
2D ビューの左上隅をクリックすると、ガイドの表示/非表示をすばやく切り替えることができます。
または、メインメニューから 表示メニュー ► ガイドライン を使用して可視性を変更することもできます メインメニューから表示メニュー ► ガイド線 ► すべてのガイドを削除
スナップオプション
これらのオプションは、ベクトル形状の作成と編集にを使用することができます。
スナップオプションフォームは、メインメニューの編集 ► スナップオプションまたはF4からアクセス可能です。
カーソルにテキストを表示
各ポイントの位置を容易に確認できるように、カーソル上にXY座標を表示します。
ガイドにスナップ
選択(✓)時には、ベクトルの作成と配置が、2Dビューに表示されている水平または垂直ガイドラインにスナップします。
ガイドを形状にスナップ
選択(✓)時には、ガイドラインのドラッグ中に形状へのスナップが可能です。
グリッドにスナップ
グリッド間隔で分割されたポイントグリッドを表示します。これは、2Dビューでベクトルやその他のオブジェクトの作成または編集中にスナップ先として使用可能です。
スナップ距離
ズームレベルに基づいた固定長さにスナップします。これは、形状の作成やノードまたはベクトルのドラッグ時に発生します。
ジョブ中心とコーナーにスナップ
ジョブの中心とコーナーにスナップします。また、ジョブのスマートスナッピングも制御します。
固定の微調整距離
Ctrl とシフトキーを押しながら矢印キーをタッピングして、固定距離で少しずつオブジェクトを移動することができます。固定の微調整距離は、各移動時に選択オブジェクトが移動する距離を指定します。
スナップ半径
スナップ半径(ピクセル)は、スナップが発生するためのベクトル形状からのカーソルの距離を調整します。素早くジオメトリを選択して移動する場合は、大まかにマウス付近にあるジオメトリを選択するために大きなスナップ半径を使用します。正確な作業が必要な場合、または複雑でオーバーラップした形状の場合は、小さなスナップ半径を使用して、付近に多くのベクトルがある領域で任意のジオメトリを選択するために無用な拡大を回避します。
形状スナップ
オブジェクトの作成または移動時に、カーソルがスナップする位置を制御するために使用されます。作成時には当該セクションの下で選択したオプションに基づいて、カーソルはベクトル形状上のアイテムにスナップします。
オブジェクト中心、スパン終点、スパン中点、円弧中心、交点、水平、垂直、指定角度と距離、ガイドラインとガイドの交点
スマートスナッピング
スマートスナッピングは、ベクトル/ノードに関する想像上の線にカーソルをスナップして作用します。これらの線は点線として表示され、ベクトルまたはノードやカーソルポイントを通過する色付きの線になる場合もあります。交差するノードにマウスオーバーし、当該線の交点にスナップ可能です。この場合、(ノードやベクトルの配置用などの)構成形状の作成は不要です。また、ほぼ全ての形状作成ツール、ノード編集、ベクトル変換で利用可能です。
注記
ノードはスパンの始点、中点、終点になります。
注記
スナップシステムは、ベクトルがマウスオーバーされるまで待機します。最後に使用された複数のベクトルを記憶し、それらに対して優先的にスナップ線を表示します。多くのスナップ線が起床されないように、同時に使用可能なノードとベクトル数には制限があります。
スナップ線は以下から作成可能です。
- マウスオーバーまたはスパンにより起床されたノード
- ベクトルプロパティ(境界ボックスや中心点など)
- 素材プロパティ(エッジや中心からの延長など)
注記
両面ジョブでは反対側のベクトルを起床させることができます。
カーソル | タイプ | 説明 |
オブジェクトの境界 | アクティブベクトル | |
水平線と垂直線 | ノードまたはスパンの中点を通過する水平線と垂直線。 | |
接線 | ノードまたはスパンの中点から始まる接線。 | |
接線に垂直 | ノードからの接線に垂直な線、または中点にまたがる線。 | |
接続線 | 2 つのノードを接続する線。中間点も含みます。 | |
形状の全長 | ベクターのジオメトリにスナップします。 | |
角度制約 | スナップ オプション F4で定義されているように、特定の角度にスナップします。 | |
ジョブ | ジョブの中心を通る水平線と垂直線。 |
オブジェクトの境界
スナップラインはベクトルの境界ボックスのエッジ上、水平と垂直の中心に表示されます。
垂直と水平線
ノード
カーソルが起床されたノードを通過する水平または垂直線付近になるとスナップ線が表示されます。
ベクトル
ベクトルの移動中にスナップ線が利用可能になり、別のベクトルとの配置に使用されます。
接線
スナップ線は起床されたノードから発生し、属するスパンの終点沿いに延長して表示されます。
接線に垂直
スナップ線は接線スナップ線から90°になります。
接続線
複数のノードを起床させると、それらを接続する線へのスナップが可能になります。また、当該線の中点へのスナップも可能です。
形状の全長
ベクトル形状にスナップします。
角度制約
ジョブのエッジと中心
ジョブのスナップがある場合
終点の位置合わせ
ベクトルの回転中に、開始点と終了点を水平方向または垂直方向に揃えることができます。
03. Getting Started - The CNC Workflow
The Vectric Workflow
The Example Project will step you through all the stages of creating, toolpathing and cutting a simple line drawing. Most CNC projects share many common concepts and steps so before we complete our practical project, let's run through them.
The structure of a Vectric Job
All the information needed to describe a single CNC project is contained in a Vectric Job document (when saved they have the file suffixes *.crv or *.crv3d). A new job always begins by defining the area of a sheet of physical material that you intend to cut with your CNC machine.
Most jobs typically only involve one sheet of material, but more complicated projects may comprise multiple materials. Don't worry, your job's primary material sheet can be updated or new sheets of material added to your job later, as your design develops.
The drawings & images used to work on a material sheet can be created on layers to help manage more complicated designs. Similarly 3D model components can also be organised onto levels. By default there is always at least one layer and one level for each sheet in a new job. You can add more layers and levels to help organise more complicated projects.
Once your material sheet has been created in the Job Setup form, the software will show you a 2D & 3D view of your design space (which matches the dimensions of your current material sheet), each in their own window.
Above the view windows is the main toolbar which allows you to navigate through the structure of your CNC job and see what is currently being displayed in view windows below. It shows you the material sheet, design layer and 3D model level that you are currently working on (referred to as 'active').
What you see in the 2D & 3D design views below will reflect these current settings and any new shapes, components or toolpaths will be created in the active locations indicated. You can also change the active sheet, active layer or active level at any time directly from these controls.
More advanced projects can also represent both sides of a sheet of material. For a two-sided project an additional control above the views shows which side of the sheet is currently active. You can view the drawings, models and toolpaths associated with the top and bottom surface of each material sheet and swap the active side of the sheet in a consistent way to the other controls.
Initially your job will be empty and so your views will be blank, but in due course, Vectric's view windows will show all the layered drawings & images, 3D model components & toolpaths for the currently active material sheet.
The currently active locations are the same for both the 2D & 3D views i.e. creating a vector shape will place it on the same active sheet and active layer regardless of whether the 2D or 3D view is used.
You can, however, toggle the visibility of object types in each view independently using the visible items toolbar at the top of each view. This is helpful for focusing on different areas of your job at each stage of creating your CNC project.
Many of the software's tools can be used directly in either the 2D or 3D view.
In V12 some tools have not yet been extended to allow full interaction in the 3D - this is an ongoing transition. If in doubt, try click
Import, Draw or Trace artwork
Computer images are most often represented as a grid of coloured squares - these images are referred to as bitmaps and their constituent coloured squares are called pixels. Except for a few very specific cases, this representation is not *directly* useful for toolpath creation. Computer drawings (from CAD or illustration applications) are very different and are instead built from mathematically defined lines & curves.
This type of representation is referred to as vector or contour artwork. Vectric software can use both bitmap and vector artwork, but most types of toolpath can only be created from vector drawings. Suitable bitmaps with bold regions of similar colour (for example logos, cartoons, icons or signs) can, however, be used to create vectors from which many types of toolpath can then be generated - this process is called bitmap tracing.
Some external artwork file types contain only bitmaps (e.g. BMP, PNG, JPG), some contain only vectors but many can contain both (e.g. PDF, SVG, DWG/DXF).
Use the design artwork to create toolpaths
We use the vector artwork to define the shapes we want to cut. It is important to emphasise that the toolpath (the actual cutting moves your machine must make to leave your intended shape) is rarely, if ever, a direct conversion of the original artwork. The toolpath must be created taking into account a complex interaction of the material, your CNC machine's capabilities and the shape of your cutting tool.
"Sculpture, per se, is the simplest thing in the world. All you have to do is to take a big chunk of marble and a hammer and chisel, make up your mind what you are about to create and chip off all the marble you don’t want." - Paris Gaulois, 1879.
Toolpaths are therefore generated from source vector artwork but once created they are almost entirely indepenendent of the artwork that created them. Moving, editing or even deleting the source artwork used to generate a toolpath will not affect the toolpath - it must be actively re-calculated to reflect any changes.
This is a carefully considered Vectric design principle - although you may be prompted that a significant alteration to your job has occurred - your toolpaths will never change automatically 'behind your back'!
That said, toolpaths do retain a handy reference to the artwork that created them. If you choose to edit a toolpath it will try to locate it's orginal source artwork and re-select it. At this point you can simply recalculate it to reflect any changes you have made to that source artwork, but you can also choose to select additional or entirely different artwork.
プレビュー
As we've discussed, the actual motion of your CNC machine (the toolpath) required to cut al shape can be complex and difficult to interpret.
Luckily your software provides an extremely accurate preview of any toolpaths that you create by simulating them in a block of virtual material. In the Example Project we will use the Toolpath Preview to verify that the toolpaths are producing the shapes we want (and we can easily corrected them if not)!
This simulated preview is a hugely beneficial step that ensures you minimise costly mistakes in the real world (we all make them from time to time) but it also allows you to check the surface finish you can expect from different strategies under different conditions.
The Toolpath Preview uses exactly the same data that will be sent to your CNC machine. You can be confident that any cutting and surface finish issues that occur at the machine but which are ない visible in the Toolpath Preview are almost always caused by a physical problem with the machine setup or tooling, which makes finding and fixing them a lot quicker!
Exporting the toolpath
Now we will be ready to export the toolpath, in the right format, ready to be loaded into our CNC machine's controller. Saving the toolpath will make use of a Post-Processor that is specific to your CNC machine. It will translate the movements contained in the toolpath into a toolpath file that is in the specific format required by your CNC machine's controller to load and run.
編集
元に戻す | ユーザーが行った最後の 5 つの変更を逆方向に進みます。 | |
やり直し | 元に戻すコマンドを使用して元に戻されたステップを、元に戻す機能を使用し始めた段階まで順に進めます。 | |
切り取り | 選択したオブジェクトをジョブから削除し、クリップボードに置きます。 | |
コピー | 選択したオブジェクトをクリップボードにコピーし、元のオブジェクトはそのまま残します | |
貼り付け | クリップボードの内容をモデルに貼り付けます (上記のカット アンド コピーを参照)。 | |
| 削除 | 選択したオブジェクトを削除します - キーボードの 削除 キーを押すのと同じです |
| 選択► | 多様なタイプのベクトルを選択します。 |
| 選択オブジェクト配置► | メニューの「オブジェクトの整列」セクションでカバーされているすべてのオプションをユーザーに提供します。 配置ツールフォームを開きます。 |
| ベクトル結合 | 開いたベクトルを結合します。 ベクトル結合フォームを開きます。 |
| カーブをベクトルに変換 | 円弧、ベジェ曲線、または直線を既存のベクトルに適合させて「滑らかにする」ことができます。 カーブをベクトルに変換フォームを開きます。 |
| 選択したベクトルをネストする | ネスティングフォームを開きます。 |
ジョブサイズと位置 | ジョブセットアップフォームを開きます。 | |
ジョブサイズと位置 | 両面プロジェクトの上面と下面を入れ替えます。 | |
| メモ | テキスト ボックスが開き、顧客名、必要な材料、特別なセットアップ手順、またはジョブを保存するときに保存しておきたいその他の関連テキスト情報など、このジョブに関するメモを記録できます。 テキストがピリオド/ピリオド/ピリオド/ドット「.」で始まる場合を使用すると、ファイルを開くたびに [メモ] ダイアログが自動的に表示されます。オプションで、[メモ]ダイアログのテキストをコメント フィールドとしてツールパスに出力することもできます。 ポストプロセッサー編集ガイドを参照してください。 |
| ドキュメント変数 | ドキュメント変数ダイアログを開きます。 |
| スナップオプション | スナップオプションダイアログを開きます。 |
| オプション | プログラムオプション ダイアログを開き、プログラムの特定の側面をカスタマイズできるようにします。 |
選択
| すべてのベクトルを選択 | デザイン内で現在表示されているすべてのベクトルを選択します (非表示のレイヤー上のベクトルは選択されません)。 |
| 開いているすべてのベクトルを選択 | デザイン内で現在表示されているすべてのオープン ベクターを選択します |
| 重複するベクトルをすべて選択 | パーツ内で現在表示されているすべての重複ベクトルを選択します。これらのベクトルは、形状と位置の点で互いの正確なコピーであるため、視覚的には 1 つのベクトルだけのように見えます。これらは一部のツールパスやモデリング機能に問題を引き起こす可能性があるため、削除するか新しいレイヤーに移動すると便利です。 |
| 現在のレイヤー上のすべてのベクトルを選択 | 選択したレイヤー上のすべてのベクトルを選択します。 |
| 選択全解除 | パーツ内で現在選択されているすべてのベクトルの選択を解除します。 |
| ベクトルセレクター... | ベクトル選択ダイアログを開きます。 |
メモ
- これにより、ファイル/モデルにメモを追加できます。
- ノートが で始まる場合。関連付けられているファイルを開くと、メモ セクションが自動的に開きます。
それに付随するスペルチェッカー機能もあります。
- ソフトウェアはスペルをチェックし、誤字を赤い下線付きで表示します。
- 下線付き文字をクリックすると、訂正案が表示されます。
- 新規文字を追加するための文字を追加機能があります。
- 誤って追加した文字を削除するための文字を削除機能があります(ユーザに追加された文字に限る)。
- スペルチェッカーの言語は、ソフトウェアの言語と同一になります。
- 日本語以外のソフトウェアにサポートされている全言語の利用が可能です。
HTML リンク。
ノートにリンクを入力するには、Web ブラウザで適切なページに移動し、アドレス バーからページの URL を選択します。
CRTL+C を押してコピーし、メモ フィールドで右クリックし、[貼り付け] オプションを使用してメモに入力します。
ノート ウィンドウで HTML リンクを使用するには、CRTL キーを押したままリンクをクリックします。これにより、コンピュータのデフォルトの Web ブラウザが開き、Web ページがロードされます。
直線でベクトルを結合/閉じる
線で結合は、選択された2つの開いたベクトル上で最近接する終点を検出し、それらを直線で結合します。線で閉じるでは、1つの開いたベクトルの2つの終点を直線で閉じます。
どちらのビューでも使用可能
このツールは 2D ビューと 3D ビューの両方で使用できます。
2D ビューでは、ベクターをより直接的に表示できますが、3D ビューでは、3D デザインでベクターを操作したり、編集ボックスを活用したりするための柔軟性が高まります。
グループ化/グループ化解除
工具経路を編集
このオプションを使用して、既存の工具経路を修正します。リストから工具経路を選択し、編集オプションをクリックしてフォームを開きます。
各工具経路に関連するベクトルは自動的に記録されます。そのため、工具経路の編集により2Dウィンドウのベクトルでベクトルが自動的に選択されます。
工具経路パラメータに必要な変更を加え、計算ボタンをクリックして工具経路を更新します。
工具経路はリストで名前をダブルクリックして編集することもできます。
重なり合うベクトル
重なり合う閉鎖ベクトルを選択し、新規形状を作成するためにマージすることができます。これらのツールは、閉鎖ベクトルをソリッド領域として扱います。
以下の例は5つのベクトル形状を示しています。長方形は最後に選択されました。
この操作後には、最初に選択したパーツ (円) のうち、最後に選択したベクトル (四角形) によってカバーされる領域のみが残ります。
どちらのビューでも使用可能
このツールは 2D ビューと 3D ビューの両方で使用できます。
2D ビューでは、ベクターをより直接的に表示できますが、3D ビューでは、3D デザインでベクターを操作したり、編集ボックスを活用したりするための柔軟性が高まります。
3Dセグメント化
セグメント ツールを使用すると、3D モデルを個別のチャンクに分割したり、 セグメント して 3 軸 CNC マシンを使用して加工できるようになります。
セグメント化ツールを使用するには、まず標準の モデルのインポートダイアログを使用して 3D モデルをインポートする必要があります。
オプションには主に 4 つのセットがあります。
- モードの選択により、どのモードになるかが決まります。
- [セグメント化平面] セクションでは、次のセグメント化平面の配置を制御します。これは主に正確な値を設定するためのものです。ほとんどの場合、3D ビュー コントロールの方が便利です。
- セグメント ビューアには、セグメント ツリーの概要が表示されます。これは、すべてのセグメントとそれらが相互にどのように関連しているかを示します。
- インポート オプションを使用すると、セグメント化されたモデルをジョブにインポートする準備ができたときに使用する設定を制御できます。
利用の概要
セグメント化ツールは、インポートされたモデルを段階的にブロックに分割することで機能します。セグメント化平面をモデルに配置し、 を押します。各セグメント化操作により、2 つの新しいセグメント (セグメント化平面の上に 1 つと下に 1 つ) が作成されます。
セグメント ビューアには、このセグメント化操作によって 2 つの新しいセグメントが生成されたことが表示されます。各セグメントは、ツリー内をクリックして選択できます。
セグメントが選択されると、その後のセグメント化操作のベースが形成され、このセグメントはさらに多くのセグメントに分割できます。ツリーは、元のセグメントの 1 つが選択されたという事実を反映しており、3D ビュー内のツリーとパーツは結果を示すために色付けされています。
各ステップで、セグメント化平面の方向と位置を調整して、結果として得られるセグメントが機械加工に適切であることを確認できます。平面を調整するには、3D ビューに表示される動的ハンドルの 1 つを使用できます。
モデルが十分にセグメント化されたら、レイアウト モードに入ることができます。レイアウト モードでは、作成されたセグメントと、ジョブにインポートされたときにセグメントがどのように表示されるかを確認できます。
この段階で、各セグメントを望ましい方向に反転できます。これを行うには、セグメントを選択し、 セグメントの位置決め セクションの矢印ボタンを使用して、可能なさまざまな方向を循環させます。
提供されたサイクルスルー オプションに存在しない方向にセグメントを配置したい場合は、セグメントを対話的に回転できます。問題のセグメントを選択し、キーボードの ショートカットを押します。これにより、選択したセグメントを中心とする動的な回転ハンドルが表示され、これを使用して対話的に向きを変えることができます。位置に満足したら、 キーボード ショートカットをもう一度押して、回転ハンドルを非表示にします。
レイアウト モードのもう 1 つの重要な機能は、アンダーカットの視覚化オプションです。このオプションをチェックすると、アンダーカット領域 (通常の 3 軸 CNC マシンではカットできないため、インポート時に無視されます) が強調表示されます。これらの領域が重要な場合は、編集モードに戻り、別の方法でセグメント化してこれらのアンダーカット領域を削除することが望ましい場合があります。
このツールは動的な性質を持っているため、機能をより詳しく理解するには、対応するビデオ チュートリアルを視聴することを強くお勧めします。
注記
インポートまたはアンダーカット解析のいずれかの時点でエラーが発生した場合、自己交差のある 3D モデルのインポートが原因である可能性があります。このようなモデルではセグメント化ツールは使用できません。
モード選択
モード選択は、レイアウトと編集モード間でツールを切り替えます。
- 編集モードでは、モデルが異なるサイズのセグメントにセグメント化されます。
- レイアウトモードでは、編集モードで定義されたセグメントの再配置、再方向付け、視覚化が行われます。
セグメント化平面
セグメント化平面セクションは、次のセグメント化平面の配置を制御します。
この平面は、3Dビューコントロールを使用、または編集ボックスの数値を調整して配置することができます。希望する位置と方向の選択が完了したら、ボタンをクリックして新規のセグメントを生成します。
セグメントビューアー
セグメント ビューア セクションには、すべてのセグメントがツリー ビューで表示されます。このツリーのルートが元のモデルです。セグメント化操作が発生するたびに、ツリー内の現在のセグメントは 2 つの子を取得します。これら 2 つの子は、セグメント化平面に沿ってスライスしたときに生成される 2 つのセグメントを表します。
いつでもツリー内の任意のセグメントを選択できます。 3D ビューにはこのセグメントのみが表示されます。このセグメントがさらにセグメント化されている場合、それらのセグメントは 3D ビューで異なる色で視覚的に表示されます。
セグメントを元に戻す
常時セグメント操作を元に戻すことができます。元に戻すには、ツリーからセグメントを選択して右クリックし、子を削除を選択します。これによりツリーから子が削除され、対応するセグメントが元に戻ります。
注記
任意のセグメントの子の削除が可能で、この操作は最近作成されたセグメントに制限されません。セグメント化を最初からやり直す場合は、トップレベルのノードの子を削除します。
セグメントの再配置
ツリー内でそれぞれのセグメントをドラッグアンドドロップし、2つのセグメントをマージすることができます。作成されるセグメントは、2つのセグメントの混合になります。これは、再混合またはセグメント化のアプローチを再考慮する際に有用です。また、特定のパーツにセグメントを作成する際に、当該セグメントが不要なパーツを含んでいる場合にも有用です。
インポートオプション
背面キャップを作成
このオプションの選択時には、任意のセグメントの背面が平面で閉じられます。このオプションは型の作成時に有用です。
スライスに収まるように素材をサイズ変更
このオプションの選択時には、新規に作成されたセグメントを含めるようにジョブのサイズが調整されます。
境界ベクトルを作成
このオプションの選択時には、境界ベクトルがセグメントの上と下の境界に作成されます。
セグメント化モデルの再インポート
セグメント化されたモデルがインポートされると、コンポーネントツリーでインポート済みのセグメントの任意の箇所を右クリックし、モデルの再インポートが可能になります。これにより、モデルはインポート前のセグメント化ツールの最終既知状態まで戻ります。
コンポーネントツリー
3Dビューに表示されるモデルは、コンポーネントツリーの下から上までのすべての可視コンポーネントを革新的に結合した結果です。このモデルは合成モデルと称されます。コンポーネントの結合順序は、合成モデルの最終形状に非常に重要です。そのため希望する最終結果になるように、コンポーネントツリー内のコンポーネントを頻繁に移動する必要があります。
詳細は、3Dデザイン/管理ページを参照してください。
結合モード
コンポーネントがどのように結合されているかを示すために、ツリー内の各コンポーネントには以下のコンポーネントとの結合方法を表すアイコンが表示されます。
グループ化
コンポーネントレベル。
すべてのコンポーネントは単一の レベル上に存在します。これらのレベルを使用して、モデリング プロセスを整理できます。合成プロセスでは、レベル自体が結合される前に、まずレベルのコンテンツが結合されます。
コンポーネントグループ。
グループ化されたコンポーネント は、独自のアイコンと、可視性チェックボックスの左側にあるプラスまたはマイナスのコントロールの存在によっても示されます。これらのコントロールを使用すると、グループを展開または折りたたんで、それぞれグループの内容を表示または非表示にすることができます。
選択
コンポーネントは 3 つの方法で選択できます。
- コンポーネント ツリーでコンポーネントの名前を左クリックします。
- 2D ビューで関連するグレースケール コンポーネントのプレビュー イメージを左クリックします。
- 3D ビューでコンポーネントを直接左ダブルクリックする
いずれの場合も、新しい選択はその後 3 つの場所すべてに反映されます。したがって、たとえば、コンポーネント ツリーでコンポーネントを選択すると、関連する 2D コンポーネントのプレビューが 2D ビューで選択されると同時に、同じコンポーネントが赤でハイライト表示されます (選択したコンポーネントが別のコンポーネントによって隠されている場合は、緑でハイライト表示されます)。 3D ビューで。
ただし、3 つの選択方法の間にはいくつかの小さな違いがあります。また、状況によっては、別の方法ではなく、ある方法を使用してコンポーネントを選択する方が利点がある場合があります。
コンポーネントツリーで選択
コンポーネントツリーは、Windowsのファイルエクスプローラーと類似した方法で作用します。コンポーネントをクリックして選択します。複数のコンポーネントを選択するには、Ctrl キーを押しながら選択に加える各コンポーネントをクリックします。このモードでは、選択済みのコンポーネントをクリックすると選択から除外されます。
シフトキーを使用すると、コンポーネントの任意の範囲を選択することができます。範囲の最初のコンポーネントをクリックし、シフトキーを押しながら選択の最後のコンポーネントをクリックします。これにより、その間にある全コンポーネントも選択されます。
コンポーネントツリーで任意のコンポーネントまたはレベルをダブルクリックすると、コンポーネントプロパティダイアログが表示されます。選択コンポーネントを修正するためにこのツールを使用する方法については、コンポーネントプロパティセクションを参照してください。
コンポーネントツリーの未選択のコンポーネントを右クリックして選択すると、関連するコマンドのポップアップメニューが表示されます。選択した全コマンドは、当該コンポーネントのみに適用されます。
選択済みで複数の選択コンポーネントの一部であるコンポーネントを右クリックすると、類似したコマンドのポップアップメニューが表示されます。このメニューから選択した全コマンドは、選択中の全コンポーネントに適用されます。
2Dビューで選択
2Dコンポーネントプレビューは、ベクトルまたはビットマップと同一の方法で動作します。選択には左マウスのシングルクリックを使用します。複数のコンポーネントプレビューをShiftキーを押しながら選択することもできます。選択中のコンポーネントプレビューを再クリックすると、インタラクティブ変換ハンドルがアクティブになります。このハンドルを使用して2Dコンポーネントプレビューとそれに関連する3Dコンポーネントの移動、回転、ストレッチが可能です。
3Dビューで選択
3Dビューでは左マウスボタンがビュー自体のマウス操作に使用されるため、コンポーネントを直接選択するために左マウスクリックは利用できません。しかし、Aspireの3Dビューでは、代わりにダブルクリックをして上記の多くの標準選択概念を利用することができます。そのため、3Dビューでコンポーネントを選択する場合は、左マウスボタンのダブルクリックが必要です。3Dビューで複数のコンポーネントを選択するには、シフトキーを押しながら選択に加える各コンポーネントをダブルクリックします。コンポーネントに関するコマンドのポップアップメニューにアクセスするには、3Dビューで右マウスボタンをダブルクリックします。
合成モデルを構成するために、コンポーネントは互いにオーバーラップまたはマージされる場合があり、3Dビューのダブルクリックによる直接的な選択が困難または不可能になることがあります。そのような場合には、コンテキストメニューを使用します。選択するコンポーネントの上のポイントを右クリックすると、当該ポイントの下にある全コンポーネントのリストが表示されます。
(赤色でハイライト表示されている)選択コンポーネントを3Dビューで右ダブルクリックすることもできます。コンポーネントの表示/非表示などのオプションや、合成モデル内の結合モードの設定が表示されます。
3Dビューでは、選択されたオブジェクトが薄い赤色になることがあります。状況によっては、一部のコンポーネントが別のコンポーネントによって不明瞭になります。この場合薄い赤色は見えません。代わりに、不明瞭になったオブジェクトのパーツは薄い緑色になり、3Dビュー内から見えるようになります。
3Dビューで編集
動的コンポーネント編集ツールの多くは、3D ビューから直接アクセスできるようになりました。 3D ビューでコンポーネントを編集すると、複合モデルへの変更の即時効果をすばやく簡単に確認できます。これらの編集オプションにアクセスするには、まずコンポーネントを選択する必要があります。選択したら、3D ビューでコンポーネントを再度クリックするか、変形モード アイコン (選択の移動、拡大縮小、回転) をクリックすると、3D 変形ハンドルがアクティブになります。
これらの大部分は、2D ビュー内のオブジェクトの場合と同じように機能します。
以下には、3D ビューでコンポーネントのプロパティを編集できるように選択できるアイコンもあります。
ここで追加の設定オプションを選択すると、結合モード、フェード、傾き、外観を調整できます。 3D ビューでフェードとチルトのオプションを使用する場合は、代わりに 3D ビューで方向を設定する必要があります。
コンポーネントツリー内の位置
コンポーネントツリー内のコンポーネントの位置は、作成される結合モデルに影響を与える場合があります。位置を変更するには、1つ以上のコンポーネントを選択し、コンポーネントツリーの上部にある青い矢印の付いたいずれかのボタンをクリックします。または、コンポーネントツリー内でマウスを使用してコンポーネントを選択し、ドラッグすることもできます。Ctrl キーを押しながらコンポーネントをドラッグすると、コンポーネント自体は移動されずにコピーが作成されるため、それを別の位置に配置することができます。
選択オブジェクトをグループ化
ベクトルのグループ化により、任意の数のベクトルを選択、移動、スケーリングなどが可能な単一オブジェクトに含めることができます。この操作のショートカットキーはGです。
ベクトルのグループ化は、異なるベクトルが単一の工具経路操作に使用される加工プロセスで有用です。グループ内の任意のメンバーをクリックすると、グループ全体が選択されます。
どちらのビューでも使用可能
このツールは 2D ビューと 3D ビューの両方で使用できます。
2D ビューでは、ベクターをより直接的に表示できますが、3D ビューでは、3D デザインでベクターを操作したり、編集ボックスを活用したりするための柔軟性が高まります。
楕円作成
カーソルとクイックキーを使用、または中心点、高さ、幅の正確な座標を入力して、インタラクティブに楕円を作成することができます。
Watch this video to see this in action: https://youtu.be/evD7YgrMgl0
インタラクティブ:カーソル
以下のように、迅速かつ容易に楕円を作成することができます。
- 2Dビューで左マウスボタンをクリックアンドドラッグし、コーナーから楕円の作成を始めます。
- 左マウスボタンを押しながら、必要なサイズまでドラッグします。
- 左マウスボタンを放します。
- 代替キーを押しながらドラッグすると、中点から楕円を作成します。
- Ctrl キーを押しながらドラッグすると、円を作成します。
クイックキー
形状を必要とするサイズまでドラッグする際に、左マウスボタンを放す代わりにドラッグ中に値を入力し、プロパティを正確に設定することができます。
- 2Dビューで形状をクリックアンドドラッグします。
- 左マウスボタンを押下したまま、以下のキーシーケンスを入力します。
- 左マウスボタンを放します。
デフォルト
デフォルトで楕円の幅と高さの設定には、コンマで区切られた2つの値を使用します。1つの値では指定した直径で円を作成します。楕円のドラッグ中に幅値 、 高さ値 入力キーを使用、または直径値 、 入力キーを使用して指定した寸法で楕円を作成します。
さらにプロパティを指定
値の後に特定の文字キーを使用して、関連するプロパティを正確に指定することができます。
- 値 X:ドラッグによる高さと設定された幅で楕円を作成します。
- 値 Y:ドラッグによる幅と設定された高さで楕円を作成します。
- 値 W 値 H:設定された幅と高さで楕円を作成します。
例
- 1 バツでは、ドラッグによる高さと幅(X)1
- 1 yでは、ドラッグによる幅と高さ(Y)1
楕円の編集
以下のように、既存の楕円を編集します。
- 修正する楕円を選択し、楕円作成フォームを開きます。
- 選択した形状が赤紫色の点線で表示されます。
- 幅と高さ値を編集します。
- をクリックして楕円を更新します。
フォームを閉じずに別の楕円を編集するには、シフトキーを押しながら次の楕円を選択します。
どちらのビューでも使用可能
このツールは 2D ビューと 3D ビューの両方で使用できます。
2D ビューでは、ベクターをより直接的に表示できますが、3D ビューでは、3D デザインでベクターを操作したり、編集ボックスを活用したりするための柔軟性が高まります。
VCarve Inlay Toolpath
VCarve Inlay ツールパスを使用すると、VCarve Inlay ピースを作成する準備が整った 2 つのパーツにデザインを切り出すポケットおよびプラグ ツールパスを簡単に生成できます。
ツールパスが生成されると、プラグ用とインレイ自体用の 2 つの別個のツールパス セットが作成されます。
これらはどちらも、最初の計算後に編集する際に、独自のわずかに異なるツール フォームを持ちます。
個別のツールパス
VCarve インレイ ツールパスの最初の計算の後、インレイ パーツとプラグ パーツはリンクされなくなります。これらのいずれかを編集する場合は、変更内容に合わせて他の側面のツールパスにも適切な調整を行う必要があります。これについて確信が持てない場合は、インレイ ツールパスの両方の部分を削除し、元のフォームに戻って、希望する調整を最初から考慮した新しい VCarve インレイ ツールパスのセットを作成することを検討してください。
VBitの変更
Pocket と Plug は両方とも、正しく適合させるために同じ VBit を使用する必要があります。 VCarve インレイ ツールパスで使用される VBit を変更する必要がある場合は、ポケット ツールパスとプラグ ツールパスを削除し、適切な新しいツールを使用して新しい VCarve インレイ ツールパスを再生成します。
加工深さ
ポケットの深さ
これはポケットが切り取られる最大の深さですが、ベクトルの設計と使用される VBit の角度によっては、この深さに達しない場合があります。
接着ギャップ
これは、2 つの半分を一緒に配置したときの、プラグの上部とポケットの下部の間の距離です。
この値は 0 より大きく、ポケットの深さより小さい必要があります。
0.001 ~ 0.01 インチまたは 0.02 ~ 0.2 mm が一般的に使用される値ですが、プロジェクトによって異なる場合があります。
表面クリアランス
これは、プラグの最低点とポケット マテリアルの最高点の間のギャップに影響します。
ギャップの値が大きいほど、後で除去するプラグ上に残る材料が少なくなります。
ギャップの値が小さいほど、2 つの材料部分が近くなり、プラグ部分がより頑丈になります。
0.0 より大きく、材料の厚さより小さい値を使用する必要があります。
工具
ボタンをクリックするとツール データベースが開き、そこから必要な VBit ツールを選択できます。詳細については、工具データベースのセクションを参照してください。
ボタンをクリックすると、[工具編集]フォームが開きます。このフォームでは、データベースのマスター情報を変更せずに、選択工具の加工パラメーターを変更することができます。
領域切削工具を使用
エンドミル、ボールノーズ、または彫刻カッターを使用してデザインの大きな開口領域を加工する場合は、このオプションにチェックを入れます。ここでツールが選択されていないが、フラット深さが指定されている場合、選択した V ビット ツールは、V インレイだけでなく平らな領域をクリアするために使用されます。このセクションのすべてのツールには、V-Bit ツールの余地が残されています。これに従って、リストの最初の工具は可能な限り多くの材料を除去しますが、後続の工具は前の工具では適合しなかった領域のみを加工します。リスト内のツールの順序は、マシン上で実行される順序と一致する必要があります。
ボタンをクリックすると、[工具データベース]が開きます。ここから使用する領域切削工具を選択し、リストに追加することができます。
リストから選択工具を削除するには、ボタンをクリックします。
ボタンをクリックすると、[工具編集]フォームが開きます。このフォームでは、データベースのマスター情報を変更せずに、選択工具の加工パラメーターを変更することができます。
選択した工具をリスト内で上下に移動するには、上下矢印ボタンをクリックします。
プラグ宛先シート
これにより、プラグ ベクターとツールパスが配置されるシートを選択できるようになります。
元のベクトルと同じシートが選択されている場合、ベクトルとツールパスは元のベクトルの位置からミラーリングされて配置されます。
別のシートが選択されている場合、新しいベクトルとツールパスがミラーリングされ、新しいシートの中心に移動されます。
新しく生成されたベクトルの最終位置を調整する必要がある場合は、通常どおりベクトルを移動し、すべてのツールパスを再計算して、一致するようにツールパスを更新します。
プラグの外側境界
シート制限
これにより、デザインの端からシートの端までカットするためのツールパスが作成されます。
ベクトルオフセット
[ベクトル オフセット] オプションを選択すると、プラグはベクトルの周囲の領域のみをカットします。これにより、カットする必要があるマテリアルの量を減らすことができますが、プラグを周囲のマテリアルに適合させる前に、プラグを周囲のマテリアルから削除するための追加の処理が必要になる場合があります。ポケット部分。
境界オフセット
境界オフセットを増やすと、プラグの周囲で除去されるマテリアルが増加します。
負の値は無視され、このフィールドでは正の値のみを使用できます。
オブジェクト選択ツール
ベクトルをAspireで作成、またはその他のデザインパッケージからインポートした後で編集することができます。ベクトルの編集は加工の準備や、モデリングツールで3D形状を作成するための構成ベクトルとして使用するために行われます。ベクトルを編集するために複数の機能を利用することができます。詳細はマニュアルのこのセクションでカバーされています。作図タブのベクトル編集の全アイコンが、メニューのオブジェクト配置セクションのアイコンと共に参照されています。
編集モード
2Dビューからベクトルを選択し、ベクトル編集セクションで選択されたオプションに基づいて、3つの異なる編集モードを使用して異なるダイナミック編集を行います。
3つの編集モード:
デフォルトで、ソフトウェアは通常ベクトル選択モードになります。
丸み付けツールパスの作成
このガジェットは、回転軸/インデクサーを使用してユーザーが粗ブランクを仕上げ直径まで加工するためのツールパスを作成するタスクを簡素化するために使用されます。円形または正方形のストックからの丸め加工をサポートし、ガジェットからツールパスを直接作成します。ガジェットは回転作業で使用するように設計されています
すべての Vectric ガジェットと同様に、フォームの最初の部分ではガジェットの目的の概要が示されています。
フォームの先頭は、ツールパスがラッピング ポストプロセッサーを介して出力されるときに Z 原点をどこに設定するかについて非常に重要なポイントになります。これはジョブのセットアップ中に設定する必要があります。
ツールを円柱の中心またはサーフェスの中心にゼロ調整するかどうかを指定することを選択できます。ブランクを丸めている場合、参照している表面は完成したブランクの表面であるため、円柱の表面に Z を設定することはできません。一貫性と精度を確保するために、ラップされたツールパスを出力するときは常に「円柱の中心」を選択することを強くお勧めします。これは、加工しているピースの直径の不規則性やブランクをチャックの中心に配置する際のエラーに関係なく、常に一定に保つ必要があるためです。
これを行う際に役立つヒントは、チャックの中心と、チャックの上部や回転軸取り付けブラケットの一部などの便利な点の間の距離を正確に測定することです。この Z オフセットをどこかに書き留め、この時点で将来のツールをゼロにし、Z オフセットを入力して回転軸の中心の位置を取得します。
[丸めツールパスの作成] フォームは 4 つの論理セクションに分かれています。
ブランクのサイズと形状
ガジェットは、正方形のブランクまたは丸いブランクを加工するためのツールパスの作成をサポートします。このセクションでは、最初のブランクの形状とその寸法を指定します。図は、どの寸法が指定されているかを示しています。
加工方法
ガジェットでは 3 つのタイプの加工が選択でき、すべてのタイプで、必要に応じて最終形状に残す許容値を入力できます。 [放射状] および [ラスター] オプションは正方形または円形のブランクで使用できますが、最適化ラスターは正方形のブランクにのみ使用できます。
ラジアル(シリンダー周り)
このオプションは、ブランクをその軸の周りで 360 度回転してから、ツール ステップオーバー距離だけ次のパスにステップオーバーし、ブランクを再び回転して戻すツールパスを作成します。
ラスター (円柱に沿って)
このオプションでは、円筒の長さに沿って加工を行った後、回転軸の回転を工具ステップオーバーと同じ量だけ増分し、工具を円筒軸に沿って戻します。回転軸が X 軸や Y 軸よりも遅い多くの機械では、この方法により加工時間を短縮できる可能性があります。
最適化されたラスター (円柱に沿って)
正方形のブランクを丸い形状に加工する場合、前のオプションでは、加工プロセスのほとんどが「新鮮な空気」で加工されるため、大量の無駄なツールパス移動が生成されます。 「最適化ラスター」戦略は、ブランク上に実際に材料がある場所にのみツールパスを作成するため、正方形のストックの場合ははるかに効率的です。
加工方法を選択した後、フォームの次のセクションで加工に使用するツールを選択できます。工具は標準の Vectric 工具データベースから選択され、ツールパスのステップオーバー、ステップダウン、および送り速度を制御します。ツールを選択した後はパラメータを編集できなくなるため、最初にツール データベース内の正しいパラメータを使用してツールをセットアップする必要があることに注意することが重要です。このセクションでは、作成されるツールパスの名前を指定することもできます。
フォームの最後のセクションの値は自動的に取得され、参照のみを目的として表示されます。
すべての値を入力した後 (すべての値は、次回ガジェットを実行するときに使用するデフォルト値として記憶されます)、「OK」ボタンを押すと、プログラム内にツールパスが生成されます。
ビットマップのトリミング
Shift+左クリックを使用して、イメージのトリミングに使用する閉じたベクトルを選択します。複数のベクトルの選択が可能ですが、イメージを最初に選択する必要があります。[ビットマップのトリミング]ボタンをクリックし、ベクトルの外側にあるイメージを削除します。トリミングに複数のベクトルを使用する場合は、トリミングツールは選択した輪郭内にあるイメージの領域のみ残します。
04. Getting Started - One-Time Setup
One-time setup
Before we can begin, however, we must complete a couple of one-time steps to ensure your newly installed software is correctly configured. We will start by showing you how to log in to Vectric's online portal, V&Co. Here you will be able to download many other tutorials & projects, clipart packs and software updates. It is also the place you will find your personal product license code and you can return to it any time should you need to recover this licence information or use the main product installer again for any reason in the future. We will also use V&Co to access our online Machine Database. We can use this to automatically configure your software for the make and model of your CNC machine. Licensing and configuring your software typically only needs to be completed once and if you are online they can both be completed almost entirely automatically with just a few clicks.
Licence Management & Your V&Co Account
It is important that your investment in our high quality CNC software is protected and that Vectric can continue to create great software in the future - you will, therefore, have a unique personal licence for the software that you have purchased.
This licence is associated with your Vectric V&Co account, and can be accessed at anytime via https://portal.vectric.com. To log in to your V&Co account you will need to use the email address (which must be uniquely yours) and password that you registered with us when your account was created - please keep these details safe. Your registered email address is the way by which we can verify your ownership of the software.
Important Note: you can reset your password at any time using your registered email account and the forgotten password link provided on the V&Co log in page. If you need to change your registered email address it is important to do this before you lose access to the one to which the software is registered. If you can no longer access your registered email, you will need to contact us directly at support@vectric.com but please note that you will now need to be able to provide independent and alternative proof of your identity and purchase.
Within your V&Co account there is a unique digital code for each piece of Vectric software you have purchased. When you first run our software on your laptop or PC you will be prompted to provide this information. If you are installing onto a computer that is online (i.e. with unrestricted internet access available) you can complete this process almost entirely automatically - this is the fastest and easiest method.
The software will simply launch your web browser and prompt you to log in to your portal account. The software will then show the appropriate license that is available to be linked. Simply accept the link and you're good to go!
Once you have completed this process after initial install you will not be required to do it again unless you change computers or need to re-install the software afresh. Your software is now uniquely licenced to you and your details will always be shown in the main interface - even when you are offline, or online but not logged-in.
You can also log into your V&Co account from within the software at any time when you are connected to the internet to enable additional online features and services such as your clipart collection or online tool database.
When logged-in, your software will indicate this in the top right corner of the main window. Please note, the one-time licensing of your software and routinely logging in when using your software are independent concepts. Your personal product licensing is unaffected by your V&Co logged-in status.
We have also ensured that you can complete the software licensing process without having a live internet connection. The process is less automatic and details of the steps can be found here.
CNC Machine Tool Configuration
The software supports hundreds of different types of CNC machine, so the the next thing we will need to do is configure the software for your particular make and model. Correct configuration comprises two elements - appropriate tool settings in the tool database for your CNC machine and setting the 'translation' file (the Post-Processor) needed to create a toolpath file that your specific machine tool controller can understand.
工具データベース
Configuring the software will create a default tool database with tool definitions include cutter movement speeds ("feedrates") that *should* be a reasonable starting point for you to edit the entries for the tool types that you have, according to the recommendations from your CNC machine manufacturer for each material. Appropriate tool settings are the result of a complex interaction of the tool's shape and design, the nature of the material you intend to cut and the strength and power of your CNC machine. Don't use any default settings without first considering whether they are appropriate for your circumstances.
We will look at the Tool Database in more detail in the Toolpath Creation section below.
Post Processors
Your software can create toolpath files for hundreds of different CNC machines and controllers. To achieve this, the software creates an internal representation of a toolpath. Only when this toolpath is saved does it get 'translated' into the specific format required by your CNC machine.
The translation instructions are contained in file called a Post-Processor (because it *processes* the toolpath *after* it has been created).
Post-Processors also determing whether the toolpath movements will be presented to the machine using metric or imperial units. This must typically match the units mode you have set on your CNC machine's controller (seek advice from the manufacturer if needed). Note, however, it doesn't matter what units where used to create the original toolpath within the software - any required conversion is automatically applied when the toolpath is saved through the Post-Processor.
Job Setup - Axis Orientation
Our software is specifically designed for 3-axis CNC Machines (with additional support for an optional rotary axis). As you look at your CNC machine, the normal conventional is that left and right movement is controlled by the X-axis, forward and backward movement controlled by the Y-axis and up and down movement is controlled by the Z-axis.
In our software the width of your job will typically be equivalent to the X-axis of your CNC machine and the height of your job to its Y-axis.
Be aware that some machines are orientated so that the X & Y axes are swapped as you look at them - left to right movement may be controlled by the Y-axis and vice versa.
Use your machine's control software to jog your machine independently in each axis to make sure your expectations are correct.
Although unusual, it is possible that some post-processors will swap the X & Y toolpath coordinates 後 you have created your toolpaths - effectively changing the apparent orientation of you job - but this is only recommended for users who are confident of their machine's configuration and usage and not recommended for the majority of users who might not be aware of the other issues this can cause. Check with your machine tool manufacturer if you have any doubts.
It can help Orientate yourself so that when you stand before the machine, when you jog the machine to move to a higher X position, it is moving Left to Right infront of you. This can help visualise how the project design you have made in the software will translate to the bed of your machine.
ドキュメント変数
ドキュメント変数は、Aspireのドキュメント変数で使用可能な値の定義メカニズムを提供します。編集メニューのドキュメント変数ダイアログを使用、または変数をサポートする任意の計算編集ボックスから作成することができます。計算編集ボックスを右クリックし、ポップアップメニューから新規ドキュメント変数を挿入を選択します。
ドキュメント変数に名前を付ける
新規ドキュメント変数名は文字で開始し、文字、数値、アンダースコアを含めることができます。作成後にドキュメント変数ダイアログの新規変数セクションの表から編集が可能です。
変数はテキストファイルにエクスポート可能で、別のジョブにインポートすることもできます。インポート時には、同じ名前の既存の全変数値が置換されます。
ドキュメント変数の使用
作成されたドキュメント変数は、任意の計算編集ボックスで使用することができます。その場合、次図のように名前を波括弧のペアで囲みます。
計算編集ボックスを右クリックすると、新規変数の作成や既存の変数を編集ボックスに挿入するためのオプションがポップアップメニューに表示されます。
ポップアップメニューからドキュメント変数が作成されると、編集ボックスに挿入されます。
ドキュメント変数へのアクセス
宣言されたドキュメント変数は、計算編集ボックスから容易にアクセスすることができます。計算編集ボックスを右クリックすると、現在利用可能なドキュメント変数と新規ドキュメント変数を迅速に挿入するためのオプションを記載したメニューが表示されます。
サイズ設定
このオプションを使用して、2Dビューで選択したアイテムを正確にスケーリングまたはサイズ変更することができます。
モード
以下のスケーリングモードを利用することができます。
- 選択をスケール
- アイテムを個別にスケール
選択をスケールでは、選択全体が単一グループであるかのようにスケーリンされます。アイテムを個別にスケールでは、アイテムは1つずつ選択されるため、各アイテムにスケーリングが適用されます。
Zを自動スケーリング
3Dコンポーネントに特定のスケーリングモードを設定します。選択(✓)時には、XまたはYでモデルコンポーネントをスケーリングします。これに比例してZでもスケーリングされます。そのため、X/Yのサイズを増加するとZ高さも増加し、逆にX/Yのサイズを減少させると高さも低くなります。未選択の場合、このフォームから、または2Dビューと3Dビューのダイナミック変換でX/Yのスケーリングを行っても、コンポーネントのZ高さは一定になります。
インタラクティブにサイズ変更
デフォルトのモードでは、マウスを 2 回クリックすることで、選択した項目を対話的に拡大縮小できます。
プロセスは次のとおりです。
- ベクトルを選択します
- もう一度クリックすると、対話型オプション (選択ボックスのハンドル) がアクティブになります。
- 白いハンドルをクリックしてドラッグします。
キーボード ショートカット T は、対話モードでスケール フォームを開きます
どちらのビューでも使用可能
このツールは 2D ビューと 3D ビューの両方で使用できます。
2D ビューでは、ベクターをより直接的に表示できますが、3D ビューでは、3D デザインでベクターを操作したり、編集ボックスを活用したりするための柔軟性が高まります。
モデル高さをスケール
このツールは、最終合成モデルにグローバルスケーリングを適用します。これにより、利用可能な素材内にデザインを正確にフィットさせることができます。また、個別に各構成コンポーネントの深さを調整せずに、必要な加工深さを管理することもできます。
正確な高さを指定...
ボタンをクリックし、比例スライダーを使用する代わりにモデルの高さに(現行単位で)特定の値を定義することができます。両面環境で作業を行っている場合は、両面をスケールするオプションが表示されます。選択(✓)時には、モデルの両面のスケーリングが可能です。未選択の場合、現在作業中の面のみのスケーリングが可能です。
インターフェイス概要
- メインメニューバー(ドロップダウンメニュー):画面上部にあるこのバーには、ファイル、編集、モデル、工具経路、表示、ヘルプの各メニューが表示されます。ここから、機能別に分類されたソフトウェアのコマンドにアクセスすることができます。いずれかのメニューをクリックすると、利用可能なコマンドが記載されたドロップダウンリストが表示されます。
- デザインパネル:画面の左側に表示されます。デザインタブとタブ内のデザインを作成するためのアイコンへのアクセスが可能です。
- 工具経路タブ:画面の右側に表示されます。工具経路タブの上部には、工具経路の作成、編集、プレビューを行うための全アイコンが表示されます。タブの下部には作成済みの工具経路が表示されます。
- 2Dデザインウィンドウ:加工用デザインの表示、編集、選択を行うためのウィンドウです。デザインはインポートまたはソフトウェアで直接作成することができます。これは3Dビューでも同様で、F2キーとF3キーの使用、またはウィンドウ上部のタブをクリックして切り替えることができます。
- 3Dビュー:合成モデル、工具経路、工具経路プレビューが表示されます。
- インターフェイスレイアウトボタン(作図タブの2Dビューコントロールセクション):2Dビューと3Dビューを同時表示、またはデザインの後期工程で工具経路タブへフォーカスを切り替える場合に使用し、異なる既定のインターフェイスレイアウト間を切り替えます。
- ここからクイック ドロップダウン メニューにアクセスして、作業中の現在のレイヤー、シート、またはコンポーネント レベルを変更できます。
インターフェイスの管理
ツール ページには自動非表示/表示動作があり、使用されていないときに自動的に閉じることができるため、作業画面領域を最大化できます。
ソフトウェアには、設計用と加工用の 2 つのデフォルト レイアウトが含まれており、各ツール ページに適切な自動非表示動作を自動的かつ便利に設定できます。各ツール ページのレイアウト切り替えボタンを使用すると、プロジェクトの設計段階からツールパス段階に焦点が自然に移るときに、インターフェイスを切り替えることができます。
自動非表示タブへのアクセス
ツールページが自動非表示(ピン付けされていない)の場合、画面のサイドにタブのみとして表示されます。詳細は、ツールページのピン付け/ピンを外すを参照してください。当該タブにマウスオーバーすると、一時的にページが表示されます。ページからツールを選択すると、再度自動的に非表示になります。
ツールページのピン付け/ピンを外す
各ツールページの自動非表示動作は、各ページのタイトル領域の右上にある画びょうアイコンを使用して制御可能です。
デザイン/工具経路のデフォルトレイアウト
Aspireには、通常のデザインワークフローと工具経路作成を補助するための2つのツールレイアウトページがあります。
すべてのタブに[レイアウト切り替え]ボタンがあります。作図とモデリングタブで当該ボタンを使用すると、工具経路タブをピン付けして作図とモデリングツールタブのピンを外し、工具経路タスクにインターフェイスのフォーカスが移動されます。工具作成タブでは、当該ボタンによってレイアウトが元に戻されます。つまり、工具経路ページのピンを外して作図とモデリングタブのピン付けを行います。これらの2つのタブは、F11キーとF12キーを使用して切り替え可能です。
ヘルプ ?
すべての形式に ? があります。アイコンをクリックすると、使用しているツール フォームの詳細を説明する適切なヘルプ コンテンツ ページに移動します。
3D ビューのヘルプ プロンプト
ヘルプ プロンプトは、現在のツールまたは操作を追跡し、関連するヘルプ ドキュメントや現在のツールのヒントに簡単にアクセスできるようにします。
手動マシン構成
マシン構成がダウンロード済みでその編集を行う場合、または新規のマシンの作成を希望する場合は、マシン構成ダイアログを使用します。
これにより、マシンの編集、複製、追加、削除が可能です。また、各構成に関連するポストプロセッサを編集することができます。
スレッドミル工具経路
スレッドミリングツールパスは以下を生成します。
- 雌ねじ、つまり、ねじ付きボルトをねじ込むことができるもの。
- おねじ、つまりボルトの外側のねじ。
これは、特別な物理ツールと螺旋ツールパスを使用して行われます。
ツールパスを使用するには、ねじパーツを作成するベクターを選択します。これらのベクトルの中心は、ねじ部品の中心を定義するために使用されます。
必要なねじのタイプに一致するようにパラメータを設定し、計算を押してツールパスを作成します。
加工深さ
開始深さ(D)
開始深さ (D) は、ねじ切りフライス加工ツールパスが計算される深さを指定します。ジョブの表面を直接カットする場合、開始深さは多くの場合 Z0 になります。既存のポケットまたは段差領域の底部を加工する場合、開始するポケット/段差の深さをここに入力する必要があります。
最大深さ (M)
最大深さは、ねじ切りが切り詰められる開始深さより下の最も深い深さです。
ねじ長さ(L)
ねじの長さは、ねじがねじ穴のどのくらい深くまで切り込まれるかを表します。この値は常に最大深さより小さくなり、使用しているねじ切りツールの最大深さと歯のオフセット、およびねじのピッチから自動的に計算されます。
工具選択
選択ボタンをクリックすると、工具データベースが開きます。ここから使用する工具を選択することができます。
編集ボタンをクリックすると、[工具編集]フォームが開きます。このフォームでは、データベースのマスター情報を変更せずに、選択工具の加工パラメーターを変更することができます。
スレッドミル工具経路は、2種類の工具をサポートします。
シングルポイント工具
シングルポイントツールを使用する場合、作成されたツールパスはらせんを形成します。側面のカッターは素材を除去してねじ山を形成します。
上の図に見られるように、単一尖頭スレッド ミル工具は三角形のすくい面を持つと想定されています。この三角形は、ツールのシャンクから突出して材料を除去するツールの部分です。
ツールの定義には次のフィールドが必要です。
- S - ツールのサイズ。工具の刃部の横サイズ
- H - ツールの高さ。カッター面の最も広い部分の垂直高さです。
- D - ツールの直径。カッターの先端から先端までを測定した直径。
- あ - ツール角度。工具の内角
- ○ - ツールのオフセット。工具の底部からカッターの先端までの距離です。常にツール サイズの半分より大きくなければなりません。一部のツールには追加のオフセットがあるため、この値を超える場合があります。
ツール高さ、ツール サイズ、およびツール角度はすべて関連フィールドです。 1 つを変更すると、別のものも変更される可能性があります。たとえば、ツールの高さを変更してもツールの角度が変わらない場合は、ツールのサイズを変更する必要があります。この変更は、ツール データベース内のツールを編集するときに自動的に行われます。
マルチポイント工具
スレッドミルにマルチポイント工具を使用することができます。マルチポイントは、単一ヘリカル動作でシングルスタイルのねじを加工するためにデザインされています。この場合、より効率的に単一動作ですべてのねじ部が加工されます。ただしシングルポイント工具とは異なり、異なるピッチの異なるねじの加工はできません。
また、シングルポイント工具に必要な寸法に加え、マルチポイント工具ではねじ部の長さの指定が必要です。これは最初から最後の加工刃間のピーク間の距離として定義されます。
利点と欠点
- シングルポイント工具では、より多様なねじの加工が可能です。加工パスを圧縮または延長し、異なるピッチのねじを作成することができます。
- シングルポイント工具では加工に時間がかかります。単一加工エッジで全ねじ部の加工が必要なため、同等のマルチポイント工具に比べて時間がかかります。
- 大型のウッドワークスタイルのジョブでは、適切なサイズのマルチポイント工具がない場合があります。
- 標準サイズのねじの加工では、マルチポイント工具は適切な間隔で容易に使用可能です。
- ソフトウェアではマルチポイント工具のピッチを変更できないため、工具経路のねじ部の長さは工具のねじ部の最長に指定される必要があります。
スレッド定義
既定ピッチ
複数のピッチの既定規格から選択することができます。この規格は、メトリック単位ではISOメトリックねじ規格、インチ単位ではユニファイねじ規格に基づきます。
いずれかのオプションを選択すると、適切な値でピッチフィールドが記入されます。雄ねじの選択時には、フィット許容誤差フィールドもピッチに適切なデフォルト値で記入されます。この許容誤差は変更可能ですが、通常では滑らかにスピンするねじの作成に必要です。
ピッチ
ピッチはねじ山の間の相違を表します。
直径
各ねじには 2 つの直径が関連付けられています。これらは、スレッドの山と谷のそれぞれです。
フォーム上の直径 (外径とも呼ばれる) は、ねじに関連付けられた最大の直径です。
フィット許容誤差
フィット許容誤差はネジがフィットする堅さを制御します。正の許容誤差を設定すると、工具はわずかに深めにねじを加工します。
多くの場合、ねじが滑らかにスピンするように多少の許容誤差が適用されます。一般的にフィット許容誤差は雄ねじに適用されますが、必要に応じて雌ねじと雄ねじの両方に適用することもできます。
雌ねじ用に円を作成
雌ねじを切断する場合、ねじ山の内側に別の工具を使用して除去する必要がある領域が生じる場合があります。どの領域を安全に削除できるかを計算するのは少し手間がかかるため、それを簡単にするために ボタンを押すと円が作成され、ユーザーはこの領域に ポケットツールパス を適用してこの領域をクリアできます。
方向
ねじ方向
右手と左手から選択可能です。これにより、ねじのスパイラルの方向を時計回りと反時計回りのいずれかに指定します。
加工方向
加工方向は、工具経路の加工を上向きまたは下向きのスパイラルとして指定します。
これは、スピンドルの方向、工具、希望する仕上げに基づいて選択します。
作成されるねじ
ねじ切りフライス加工ツールパスによって作成されるねじ山は、ねじ山の ISO 標準に基づいています。この規格の詳細については、 ここを参照してください。これは 60 度の角度を持つツールに基づいており、他の角度のツールの使用を妨げるものではありませんが、60 度のツールを使用すると最適な結果が得られます。
この標準を使用した結果、作成されたスレッドには予想どおり平らな領域が含まれます。
位置と選択のプロパティ
セーフZ
高速/最大送り速度でカッターを安全に動かすことができるジョブ上の高さ。この寸法は、マテリアル設定フォームを開いて変更できます。
ホームポジション
加工の前後にツールが移動する位置。この寸法は、マテリアル設定フォームを開いて変更できます。
ベクトル選択
ツールパス ページのこの領域では、ベクトルのプロパティまたは位置を使用して、加工するベクトルを自動的に選択できます。また、この方法を使用してツールパス テンプレートを作成し、将来同様のプロジェクトでツールパス設定を再利用することもできます。詳細については、セクション ベクトルセレクターと高度なツールパステンプレートを参照してください。
名前
ツールパスの名前を入力することも、デフォルトの名前を使用することもできます。
工具経路を削除
このツールは、計算されたツールパスをツールパス リストから削除するために使用されます。削除するツールパスを選択し、[ツールパスの削除] ボタンをクリックするだけで削除できます。
あるいは、ツールパスを右クリックして、ツールパス リスト内の 1 つまたは複数のツールパスを削除できます。次に、ドロップダウン メニューから [削除] オプションをクリックします。これにより、画像に示すように、[これを削除]、[非表示をすべて削除]、[表示されているものをすべて削除]、[すべてを削除] のオプションが表示されます。
これを削除 は、マウスを右クリックした名前のツールパスのみを削除します。
非表示のものをすべて削除 は、名前の横にチェックマーク ✓ が付いていないため、現在 2D ビューまたは 3D ビューに表示されていないツールパス リスト内のツールパスをすべて削除します。
表示されているものをすべて削除 は、ツールパス リスト内のツールパスのうち、名前の横にチェック マーク ✓ が付いているため、現在 2D ビューまたは 3D ビューに表示されているツールパスを削除します。
すべて削除 は、ツールパス リスト内のすべてのツールパスを削除します。
ツールパス (または複数のツールパス) を誤って削除した場合は、[編集] ドロップダウン メニューの [元に戻す] コマンド、[図面] タブの [元に戻す] アイコン、または [元に戻す] ショートカット キーの組み合わせを使用して、ツールパスの削除を元に戻すオプションがあります。 Ctrl + Z。
ミラー
選択したベクトル/ビットマップ/コンポーネントグレースケールを新規方向にミラーします。
標準のミラーフォームを使用して、選択の境界ボックスに相対した対象軸で選択したオブジェクトをミラーすることもできます。
- ミラーするオブジェクトを選択します。
- ミラーアイコンをクリックしてミラーフォームを開きます。
- 対象オブジェクトをそのまま残して新規オブジェクトセットを作成するには、ミラーコピーを作成オプションを選択します。
- ボタンをクリックして変更を了解します。
回転境界を使用
このオプションは、単一オブジェクトの選択時のみ有効になります。選択時には、選択ツールに表示されるローカル回転境界でオブジェクトを反転します。オブジェクトが回転されない場合は、通常どおりに作用します。
線を反転
ミラーリングするベクトルを選択し、 シフト を押したまま、ミラーとして使用するライン ベクトルを選択します。このオプションは選択できるようになり、ミラーリング ベクトル上で目的のベクトルを反転します。
ショートカット
以下のショートカットキーが利用可能です。
- H:水平にミラーします。
- Ctrl + H:ミラーを作成します。水平にコピーします。
- シフト + H:素材中央を中心に水平にミラーします。
- Ctrl + シフト + H:素材中央を中心に水平にミラーコピーを作成します。
- V:垂直にミラーします。
- Ctrl + V:ミラーを作成します。垂直にコピーします。
- シフト + V:素材中央を中心に垂直にミラーします。
- Ctrl + シフト + V:素材中央を中心に垂直にミラーコピーを作成します。
どちらのビューでも使用可能
このツールは 2D ビューと 3D ビューの両方で使用できます。
2D ビューでは、ベクターをより直接的に表示できますが、3D ビューでは、3D デザインでベクターを操作したり、編集ボックスを活用したりするための柔軟性が高まります。
レイヤ管理
ベクター、ビットマップ、およびコンポーネント グレースケールは、異なるレイヤーに割り当てることができます。
単一レイヤに割り当てられた全オブジェクトは、レイヤ管理ツールを使用して、同時に選択、ラベル付け、色付け、(誤編集を防ぐために)一時的に非表示、ロックすることができます。比較的単純なデザインでも、レイヤにアートワークの要素をまとめることで、プロジェクトをはるかに容易に管理することができます。
レイヤタブ
レイヤタブを使用して、作業中のアートワークの現行レイヤ構造の概要を取得することができます。また、レイヤをさらに広範囲にわたって管理することもできます。レイヤ設定とレイヤタブのレイヤリストは同一です。ただし、レイヤタブのレイヤリストでは、アートワーク自体で作業を続けている間、レイヤの順序の制御や、リストの表示、ピン止め、ドッキング解除なども可能です。
リストアイテムコマンドとアイコン
リストの各レイヤには5つの要素があります。
状態アイコン
左端のアイコンはレイヤの表示/非表示を表します。このアイコンをクリックすると表示/非表示が切り替わります。
錠前は誤編集を防ぐためにレイヤがロックされていることを表します。ロック解除するには、リストでレイヤを右クリックしてロック解除コマンドを選択します。
レイヤ色
色見本を使用してレイヤの全ベクトルの色付けを行います。色見本アイコンをクリックして色の選択ダイアログから既定色を選択、またはからカスタム色を作成することもできます。
レイヤコンテンツ
レイヤコンテンツアイコンは、レイヤが非表示の場合追加インジケーターとしてグレーアウトされます。レイヤ空コンテンツアイコンは空の白いシートで、レイヤにオブジェクトまたはベクトル形状が含まれていないことを表します。第三者のCAD作成パッケージからDXFまたはDWG形式でファイルをインポートすると、 空のレイヤがファイルに含まれる場合があります。このアイコンを使用して空のレイヤを識別し、削除することができます。
レイヤ名
レイヤの名前を変更するには、リスト内のレイヤアイテムの当該パーツをダブルクリックし、その場で編集することができます。これはWindows Explorerの名前の変更と同様に作用します。または右クリックメニューや、レイヤポップアップメニューから名前を変更コマンドを使用することもできます。
ポップアップメニュー
ポップアップメニューアイコンをクリックし、レイヤをアクティブにしたり、ロック、挿入、削除、マージなどを行い、選択と選択解除を切り替えるレイヤを選択することもできます。
レイヤ上の全てを選択
レイヤリストの任意のレイヤをダブルクリックし、当該レイヤ上の全オブジェクトを選択します。または、レイヤのポップアップメニューからレイヤベクトル選択コマンドを使用することもできます。
レイヤの順序矢印
レイヤリスト表題ラベルの隣に2つの矢印ボタンが表示されます。この矢印を使用して、選択したレイヤをレイヤリスト内で上下に移動することができます。順序次第では表示が妨げられる場合があるため、オブジェクトの表示順序の設定は(特にビットマップと2Dコンポーネントプレビューで)重要になります。リストの上部レイヤにあるオブジェクトは、常に下部レイヤのオブジェクトの前に表示されます。そのため、2Dビューでは「下側」になります。レイヤ順序矢印を使用して、この問題を解消することができます。
新規レイヤを追加
新規レイヤは新規レイヤを追加ボタンを使用して追加可能です。オブジェクトを右クリックし、レイヤにコピー ► 新規レイヤ...またはレイヤに移動 ► 新規レイヤ...を選択して、2Dビューから新規レイヤを直接作成することもできます。
レイヤ名
この段階でレイヤを識別するための名前を付けることを推奨します。今後の作業でデザインがより複雑になると、名前によりレイヤの管理が容易になります。
表示色
当該レイヤの全ベクトルがこの設定に基づいて色付けされます。2Dビューから直接異なるレイヤ上のベクトルを識別する場合に非常に有用です。
表示
このオプションを選択(✓)すると、新規レイヤの作成時に自動的に表示されます。
アクティブ
このオプションを選択(✓)すると、新規レイヤが自動的にアクティブレイヤになり、これに続くベクトル作成または操作が当該レイヤで行われます。
新規レイヤ挿入
新規レイヤを速やかに追加するには、レイヤの右クリックポップアップメニューからレイヤ挿入コマンドを使用します。このコマンドは、選択レイヤの上に可視のロック解除された黒い新規レイヤを作成します。作成後に新規レイヤ名を入力して編集することができます。
レイヤにオブジェクトを移動
レイヤ上のオブジェクトは、2Dビューでオブジェクトを右クリックしてポップアップメニューから[レイヤに移動]を選択し、別のレイヤに移動することができます。ポップアップメニューから[レイヤにコピー]を選択し、選択したオブジェクトのコピーを別のレイヤに配置することもできます。
ガジェット
ガジェットはCut2D Pro、VCarve Pro、Aspireに機能を追加する小型のプログラムです。ソフトウェアへの新機能の追加や、共通のタスクシーケンスの自動化に使用可能です。たとえば、標準のエンドミルを使用した蟻組みの加工機能の追加や、ネストされたジョブ内の各シートに工具経路テンプレートを適用し、自動的にポストプロセスを行い、工作機械にファイルを保存する場合などが相当します。
新規ガジェットをインストール... | 標準の[開く]ダイアログを開きます。ここから、ダウンロード済みのガジェットをインストールします。 |
ガジェットショートカット | ガジェットショートカットダイアログを開きます。 |
ガジェットをインストール
ガジェットウェブサイトからダウンロードやインストールを行い、ガジェットライブラリを拡張することができます。
ガジェットはパブリックドキュメントフォルダー(公的文書/Vectric/Aspire/ガジェット)にインストールされます。ガジェットを削除するには、この場所を参照してフォルダーを削除します。
各ガジェットの実行には特定の要求事項があります。そのため、最初に説明をご一読いただくことを推奨します。一部のガジェットでは、ガジェットの実行前にベクトルの選択や、ソフトウェア内でジョブの作成前に実行が必要になります。実行前に要求事項が満たされない場合、未実行の要求事項が記載されたエラーメッセージが表示されます。
注記
ガジェットは、メインプログラムに統合されている機能ほど完全ではありません。ガジェットの目的は、Vectricによるメインのインターフェイスを妨害しない小さな要求事項を処理する単純なアドオンの生成です。ガジェットライブラリは経時的に拡張するため、全ガジェットをインストールする必要はありません。実行するタスクに関連するガジェットのみインストールしてください。
ガジェットを実行
インストールされたガジェットは、Aspireが起動されるたびに動的にビルドされるメインのガジェットメニューからアクセス可能です。
ガジェットにショートカットを割り当てることもできます。
ガジェットショートカット
リストから選択したガジェットを実行するために、ショートカットを設定することができます。ガジェットショートカットを設定するには、ガジェットメニューからガジェットショートカットボタンを選択します。
選択したガジェットを実行するために、いずれかの既定ショートカットキーを割り当てます。利用可能なショートカットキーは、Ctrl キーとファンクションキーです。
インストール済みガジェット
Aspireのデフォルトインストールには、複数のガジェットが含まれています。これらのガジェットは、ガジェットメニューから利用可能です。
ラッピングサブメニュー:
注記
回転軸の共通のタスクを実行するためのガジェットを提供します。回転加工を行わない場合は、ガジェットフォルダーから[ラッピング]ガジェットを削除することができます。これにより、ガジェットメニューから利用不可になります。
ガジェット開発
LUAスクリプト言語を使用して、ガジェットの作成が可能です。ガジェットウェブサイトでSDKとチュートリアルを提供しています。
注記
開発にはプログラミングの知識が必要です。
VectricはSDKとチュートリアルのみを提供し、ユーザーガジェットの開発へのサポートは提供できません。
Vectricフォーラムにはガジェットに特化したセクションがあります。ここから、Vectricや別のユーザーの型から最新の情報を得ることができます。
モデルをオフセット
オフセット モデル ツールは、複合モデルの 3D オフセットを作成します。
このツールを使用するには、モデルをオフセットする距離を指定します。
ボタンをクリックして、オフセットの結果を確認します。
をクリックして続行するか、 をクリックしてフォームを終了します。
[Z 値をゼロ平面にクリップ] オプションを使用すると、最終結果が常に正になることが保証されます。ゼロ面よりも低い領域を持つモデルで使用すると、モデルのこれらの部分が削除され、正の値のみが残ります。これは、モデルの一部として平面がある場合に、オフセット量によって実際に平面が低くなるのを避けるのに役立ちます。
この関数を使用すると、正または負の値でオフセットできます。
注記
「プレビュー」ボタンを繰り返しクリックすると、選択したオフセットが複数回適用されます。プレビューの効果をすべて削除するには、「キャンセル」ボタンをクリックします。
多角形作成
多角形(例:三角形、五角形、六角形)は、カーソルとクイックキーを使用してインタラクティブに作成可能です。または、辺の数、正確な座標、半径を入力して作成することもできます。
Watch this video to see this in action:
インタラクティブに作成
2Dビューでマウスを使用して、迅速かつ容易に多角形を作成することができます。
- 左マウスボタンを押下して中心点を指定します。
- マウスボタンを押しながら必要な半径までドラッグします。
- 左マウスボタンを放して形状を作成します。
注記
Altキーを押しながらドラッグすると、中点から多角形を作成します。
クイックキー
形状を必要とするサイズまでドラッグする際に、左マウスボタンを放す代わりにドラッグ中に値を入力し、プロパティを正確に設定することができます。
- 2Dビューで形状をクリックアンドドラッグします。
- 左マウスボタンを押下したまま、以下のキーシーケンスを入力します。
- 左マウスボタンを放します。
デフォルト
デフォルトでは、単一の値を入力すると、ポリゴンの半径が設定されます。多角形をドラッグしているときに、「 半径 値 入力 」と入力して、正確に指定した半径を持つ多角形を作成します。
サンプル
- 2 。 6 入力 - 半径 2.5 の多角形を作成します。他のすべての設定はフォームに従って
さらにプロパティを指定
値の後に特定の文字キーを使用して、関連するプロパティを正確に指定することができます。
- 値 D - 指定された直径、その他すべてのプロパティをフォームに従って持つ多角形を作成します。
- 値 S 値 R - 指定された数の辺 (S) と外半径 (R) を持つ多角形を作成します。
- 値 S 値 D - 指定された辺数 (S) と外径 (D) を持つ多角形を作成します
例
- 1 R - 外半径 1、フォームに従った側面の数
- 1 D - 外径 1、形状に応じた側面の数
- 8 S 1 R - 外半径 R が 1 の 8 角形の多角形
- 6 S 2 。 6 D - 外径 2.5 の 6 面多角形
どちらのビューでも使用可能
このツールは 2D ビューと 3D ビューの両方で使用できます。
2D ビューでは、ベクターをより直接的に表示できますが、3D ビューでは、3D デザインでベクターを操作したり、編集ボックスを活用したりするための柔軟性が高まります。
鍵穴工具経路
このガジェットは、サインや額を容易に壁に掛けられるように、裏側に切り込む「鍵穴」工具経路の作成プロセスを簡素化します。これらのスロットは、左側に表示されている「鍵穴」カッターを使用して加工されます。このようなスロットの工具経路には、取付ねじエントリポイントでカッターの幅広部が素材サーフェス以下になる深さまで素材への切り込みが必要です。その後、工具はスロットの端末までスロット沿いに移動してからスロット沿いにパスを戻り、元の切り込みポイントでリトラクトします。
その他のVectricガジェットと同様に、フォームの上部に使用方法の概要が表示されます。このガジェットでは、ガジェットの実行前にデザインから1つ以上の円状ベクトルを選択し、鍵穴スロットのエントリポイントを示す必要があります。当該位置を示すベクトルを選択せずにガジェットを開始すると、以下の警告が表示されます。
フォームが表示されたら、鍵穴工具経路のパラメータを入力することができます。
入力するデータは以下の3つのカテゴリに分類されます。
作図プレビュー
スロットを視覚化するために、ガジェットはジョブサーフェスにスロットが表示されるとおりにベクトルの外形を作図します。この作図はオプションのため、このセクションのパラメータの入力が不要な場合は、[サーフェス上に外形のプレビューベクトルを作成]チェックボックスを選択解除します。プレビューが必要な場合は、鍵穴カッターに作成されるエントリ穴直径と、工具がサーフェス上に作成するスロットの直径を指定することができます。また、ベクトルが作成されるレイヤ名の指定も可能です。
工具経路パラメータ
最終セクションでは、送り速度と切込み速度を使用する工具と、作成される工具経路の名前を指定します。通常のプログラムでは鍵穴カッターはサポートされていないため、必要な送り速度を使用してエンドミルを設定します。
全パラメータを入力してからをクリックします。これにより、ガジェットはプログラム内でスロットを加工する工具経路を作成します。また、ベクトルプレビューが有効な場合はそれも作成します。次図は3Dビューの工具経路と2Dビューのプレビューベクトルを表しています。
コンテキストメニュー
Aspireの異なる場所で►右マウスボタンをクリックすると、クリックされた場所やオブジェクト、またはマウスで選択された内容に応じた選択肢が記載されたメニューが表示されます。このページでは、右マウスクリックに表示される一部の領域やメニューの詳細を説明します。
2Dビュー
このメニューは、パーツの白色背景または選択ベクトル上の2Dビューをクリックすると表示されます。多くのオプションが本マニュアルの別の場所に記載されている機能やアイコンと同じ操作です。作動方法については、それぞれ適切なセクションを参照してください。
これらのオプションの多くは状況依存でもあり、そのオプションの対象にできないものを右クリックするとグレー表示されます。
選択レイヤーを有効にする
アクティブ レイヤを、選択したアイテムが現在存在するレイヤとして設定します。
外観
これにより、次のツールボックスが表示されます。
このスライダーを使用すると、このビットマップ/コンポーネントが現在選択されている項目ではない場合に適用されるフェーディングの量を増減できます。
これは、他の作業をしているときに背景に消えたり、他の作業をしているときに目立つように表示したままにしたりする場合に役立ちます。このデフォルト値は 50% で、アイテムごとに cen を設定します。
外観
これにより、次のツールボックスが表示されます。
このスライダーを使用すると、このビットマップが現在選択されている項目ではない場合に適用されるフェーディングの量を増減できます。
これは、他の作業をしているときに背景に消えたり、他の作業をしているときに目立つように表示したままにしたりする場合に役立ちます。このデフォルト値は 50% で、アイテムごとに cen を設定します。
コンポーネント
これにより、結合タイプを変更したり、完全な コンポーネントプロパティ フォームを開くなど、コンポーネントのオプションに素早くアクセスできるようになります。
テキスト
曲線から削除:
以前に曲線ベクトルに従うようにテキストを追加した場合、これによりその曲線からテキストを削除し、元の曲線のない状態に戻すことができます。
ブロックを行に分割します:
テキストに複数行のテキストが含まれている場合、そのテキスト オブジェクトを複数のテキスト オブジェクトに分割し、それぞれが元のテキストの 1 行で構成されるようにすることができます。
ベクトルに変換:
これにより、テキスト オブジェクトが標準ベクトルのセットに変換され、法線ベクトルとして編集できるようになります。
レイヤーとサイド操作
レイヤーにコピー、{em:text2}、{em:text3}、{em:text4}、{em:text5}オプションは、コンテキストメニュー独自のオプションです。
これらには、レベル、レイヤー、シート モードのほか、コンテキストに依存する反対側モードがあるため、右クリックした項目に適用されるオプションのみが表示されます。
- レイヤーにコピー:既存のレイヤーにオブジェクトをコピー、またはコピーを配置するために新規レイヤーを作成します。
- レイヤーに移動:同一の選択肢を提供しますが、コピーを作成する代わりにオリジナルのオブジェクトを移動します。
- 反対側:選択オブジェクトを両面ジョブの反対側にコピーします。素材の表示時に一致するようにオブジェクトが変換されます。
- レイヤーに移動 フロント/バックは 2D ビュー専用であり、アイテムを同じレイヤー上の他のアイテムの前または後ろに移動します。
- レイヤーに移動 Up/Down は 3D 専用であり、現在のレベル内のコンポーネントの位置を上げたり下げたりします。
スパン編集メニュー
現在の選択モードが ノード編集に設定されている場合、ユーザーがマウスの右ボタンをクリックすると、カーソルが現在ベクトル ノード上にあるか、2D で選択したベクトルのスパン上にあるかに応じて、2 つの異なるメニューのいずれかが表示されます。ビュー。
これらのメニューには、特にこの選択と位置に対応する機能があります。ここに示すメニューは、ノード編集モードでベクトルのスパン上にカーソルを置くと表示されます。
さまざまな選択肢が表示されます。
- スパンを線、ベジェ (曲線)、または円弧に変換します
- 点を挿入する
- その時点でベクトルをカットします
- スパンの削除
- 中点を挿入する
- ベジェ曲線を直接ドラッグするときにベジェ曲線の開始方向と終了方向を固定する [ベジェ接線を維持] は、オンまたはオフに切り替えることができます。
このメニューから、選択したベクトルの方向を反転したり、選択した開いたベクトルを閉じたり、選択した 2 つの開いたベクトルを結合したり、ノード編集モードを終了したりすることもできます。
これらの多くには、対応するショートカット キー (メニューのコマンドの右側に表示) があり、マウス ボタンを右クリックしてアクセスする代わりに、マウスの位置 (ノード編集ベクトル スパン上) にあるときにキーボードから選択できます。メニュー。
ノード編集メニュー
このメニューは、カーソルが ノードの編集 モードのベクトルのノード上にあるときに表示されます。
さまざまな選択肢が表示されます。
- ポイントを削除する
- 滑らかにしてください
- 仮想中点に点を挿入します
- その点でベクトルをカットします
- 点をベクトルの開始点に変更するか、ポリライン ツールを使用してベクトルを延長します。
- ノード編集の水平または垂直ミラー モードは、オンまたはオフに切り替えることができます。
このメニューから、選択した開いたベクトルを閉じる、選択した 2 つの開いたベクトルを結合する、ノード編集モードを終了する、または最後に [プロパティ] を選択してノードの正確な XY 座標位置を確認して編集することもできます。
これらの多くには、対応するショートカット キー (メニューのコマンドの右側に表示) があり、マウス ボタンを右クリックしてアクセスする代わりに、マウスの位置 (ノード編集ベクトル ノード上) にあるときにキーボードから選択できます。メニュー。
レベルメニュー
コンポーネントツリーのレベルを選択してその上で右クリックすると、コンテキストメニューが表示されます。
最初のセクションでは、レベルと以後のレベルの結合方法を変更、レベルの表示/非表示の切り替えなど、選択レベルに変更を加えます。レベル内の全コンポーネントを選択するには、コンポーネント選択オプションを使用します。
次のセクションには、個別のコンポーネントに影響を与えずにレベルに効果を適用するオプションを含みます。
- クリップ効果を選択すると、選択された閉じたベクトルにレベル上の結合されたコンポーネントを動的にクリップします。
- ミラーモードを使用して、レベル上の結合されたコンポーネントを多様な方法でミラーすることができます。
- ラップは回転ジョブのみで利用可能で、このオプションを使用しないと切り取られてしまうジョブ領域外のコンポーネントを反対側にラップすることができます。
次のセクションでは、新規レベルの挿入や選択レベルの改名が可能です。
最後のセクションでは、.3dClipファイルとしてレベルのすべての内容をエクスポートすることができます。このファイルは、Aspireにグループとして再インポートされます。
コンポーネントメニュー
このメニューは、コンポーネントツリーでコンポーネントを選択して右クリックすると表示されます。
最初のオプションでは、コンポーネントをレベル内のその他のオブジェクトと結合する方法を選択します。その後、コンポーネントグレースケールを正面または背面に移動して、2Dビューに配置するオプションを利用することができます。次のオプションでは、コンポーネントのコピーや複製、ならびに選択したコンポーネントを.3dClipファイルとしてエクスポートすることができます。複数のコンポーネントを選択している場合は、コンポーネントのグループ/グループ解除オプションが利用可能になります。コンポーネントは削除や改名も可能です。[これを表示]、[これのみを表示]、[これ以外を表示]、[すべて表示]からコンポーネントの表示オプションを選択することができます。また、[これを非表示]または[すべて非表示]メニューを使用して、コンポーネントの非表示も可能です。選択したコンポーネントのプロパティフォームを開き、最後のオプションを使用して、コンポーネントツリー内の新規または既存のレベルにコンポーネントを移動することができます。
クリップアートメニュー
{internalLink:page1}のクリップアートピース上で右クリックすると、ジョブに新規または既存のレベルをインポートするオプションが表示されます。これにより、オブジェクトがワークスペースの中央に配置され、選択したレベルのコンポーネントリストの最上部に追加されます。新規レベルを選択すると、名前の入力と結合モードの選択が可能になります。
クリップアートタブのクリップアートピース上で右クリックすると、ジョブに新規または既存のレベルをインポートするオプションが表示されます。これにより、オブジェクトがワークスペースの中央に配置され、選択したレベルのコンポーネントリストの最上部に追加されます。新規レベルを選択すると、名前の入力と結合モードの選択が可能になります。
含まれているフォルダーを開く
Windows でクリップアート ファイルを含むフォルダーを指定することもできます。
ダウンロード
ソフトウェアに含まれるクリップアート パックの一部として含まれるクリップアート ファイルについては、それらをダウンロードするオプションがあります。 クリップ・アート ガイドを参照してください。
レイヤーメニュー
活性化
このレイヤーをアクティブレイヤーとして設定します。
見せる
4 つのオプションのセットから表示するレイヤーを選択し、ビューに表示します。
非表示
どのレイヤーを非表示にして非表示にするかを選択します。
ロック
このレイヤー上のベクトルが選択できないように、このレイヤーをロックします。
ロックを解除する
このレイヤーのロックを解除すると、そのレイヤー上のベクトルを選択できるようになります。
新規レイヤ挿入
右クリックしたレイヤーの上に、新しい空のレイヤーを作成します。
削除
このレイヤーを削除します
名前の変更
このレイヤーの名前を変更します
可視の結合
現在表示に設定されているすべてのレイヤーを折りたたみ、それらのレイヤー上のすべてのオブジェクトをこのレイヤーに配置します。
レイヤーベクトルの選択
ビュー内のこのレイヤー上のすべてのベクトルを選択します。
工具経路リストメニュー
ツールパス リスト内のツールパス名を右クリックすると、このツールパスを変更するためのさまざまなオプションが表示されます。オプションがある場合はツールパスを表示できます。
- これを見せて、
- これだけを表示、
- これ以外のすべてを表示
- このツールですべてを表示
- すべて表示する。
これにより、選択に応じてツールパスの表示/非表示が切り替わります。次のオプションを使用すると、ツールパスを非表示にするかすべてのツールパスを非表示にすることができます。 [シートをアクティブ化] を選択すると、選択したツールパスに関連付けられたシートがアクティブになります。
選択したツールパスを編集、名前変更、または複製できます。 [再計算] サブメニューを使用すると、選択したツールパス、表示されているツールパス、または更新されたジオメトリ選択を含むすべてのツールパスを再計算できます。
「空のグループを作成」では、後でその中にツールパスを配置できる空のツールパス グループが作成されます。 Group Visible は、表示可能なツールパスを含むツールパス グループを作成します。
グループ解除を使用すると、ツールパス グループに含まれるツールパスを保持したまま、ツールパス グループを削除できます。 「削除」サブメニューを使用すると、1 つまたは複数のツールパスを削除できます。「これを削除」、「非表示をすべて削除」、「表示されているものをすべて削除」および「すべてを削除」を実行できます。
ベクトルをオフセット
選択したベクトル (開いたまたは閉じた) を内側または外側にオフセットして、エッジ パターンや境界線などに役立つ新しいベクトル形状を作成できます。ベクトル形状をオフセットするには、次の手順を実行します。
- オフセットするベクトルを選択してください
- 必要な方向を選択します - 外側 / 右または内側 / 左
- 距離を入力してください
- ボタンをクリックします
オプション
オフセットオプションによる動作は、オフセット対象のベクトルが開閉どちらであるかによってわずかに異なります(後述)。
鋭角コーナー作成
デザイン内の全ての鋭角を保持します。
開いたベクトルをオフセット
開いた形状のオフセット時には、オプションが選択の左右どちらかになります。開いたベクトルの方向が選択の左右を決めるため、非常に重要になります。(Nキーを押下して)[ノード編集]モードを選択し、ベクトルの始点に緑色のノードを表示します。次図の開いたベクトルが示すように、緑色のノードから方向を識別します。
どちらのビューでも使用可能
このツールは 2D ビューと 3D ビューの両方で使用できます。
2D ビューでは、ベクターをより直接的に表示できますが、3D ビューでは、3D デザインでベクターを操作したり、編集ボックスを活用したりするための柔軟性が高まります。